首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotube (MWCNT)‐coated polystyrene (PS) beads have been prepared by dispersion polymerization followed by a layer‐by‐layer self‐assembly method. The concentration of carboxylic acid groups on the MWCNTs increased from 1.81 × 1021 to 3.43 × 1022 COO per g as the treatment time was increased from 3 to 9 h. The sulfonated polystyrene (SPS) beads changed from being negatively charged to positively charged when the cationic polyelectrolyte was self‐assembled on their surface. The surface morphology of the adsorbed polyelectrolyte was smooth without any aggregation and the thickness of the polyelectrolyte coating on the SPS beads was ≈0.6 µm. The electrical conductivity and resistance of the MWCNT‐coated SPS beads were measured to be 4.0 × 10−2 S · cm−1 and 12.8 Ω at a volume fraction of 91%, respectively.

  相似文献   


2.
Thiophosphate‐ and amino‐containing polymers—poly[diethyl 2‐(methacryloyloxy) ethyl phosphate‐stearyl acrylate] (PPS) and poly(2‐dimethylaminoethylacrylate‐stearyl acrylate) (PNS)—were synthesized, and their characteristics at an oil/metal interface under a high load and rotary velocity were investigated by the measurement of the temperature of the oil, the frictional coefficient, and the electrical contact resistance between the two metal surfaces. The experimental results indicated that PNS most effectively limited the increase of the oil temperature and the frictional coefficient at low temperatures. However, PNS reduced the oil temperature and frictional coefficient less effectively than the base oil at high temperatures, whereas PPS most effectively reduced the oil temperature and frictional coefficient and increased the electrical resistance at high temperatures. Moreover, the adsorption layers of PPS could be directly observed with scanning electron microscopy (SEM). These adsorption layers were analyzed by energy‐dispersible spectrometry to determine the phosphorus content and by electron spectroscopy for chemical analysis to demonstrate the existence of ferric or ferrous ions of sulfide or sulfate. The results of this study suggested that the adsorption layer of the thiophosphate‐containing polymer resulted in chemisorption by a reaction of the thiophosphate group on a metal surface. In contrast, an amino‐containing polymer was physically adsorbed onto a metal surface at low temperature, although no adsorption layer was observed at a high temperature with SEM. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 106–115, 2003  相似文献   

3.
The interface between carbon fiber reinforced polymer composites and metal plays a critical role in determining the strength of epoxy/metal laminated composites. We propose to introduce one dendrimer layer into the epoxy/metal interface, aiming to enhance the interfacial adhesion strength so that the interface could more effectively transfer the load from epoxy to metal. In this paper, the preparation and adsorption of dendrimer layer onto the alumina surface were systematically investigated. The results show that a highly stable and nanopatterned dendrimers layer was dip‐coated onto alumina substrates by adsorbing poly (amidoamine) dendrimers. It was confirmed that the dendrimers were adsorbed onto the alumina via acid‐base chemical interactions. The adsorption depends on the reaction time. The adhesion property between dendrimers and alumina was examined by sonication method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Poly[4‐amino‐2,6‐pyrimidinodithiocarbamate] was prepared from the reaction of 2‐mercapto‐4,6‐diaminopyrimidine with carbon disulfide, followed by condensation through the removal of H2S gas. Five polymer–metal complexes of manganese, ferrous, ferric, zinc and mercury were then prepared. The polymer–metal complexes are investigated by elemental analyses, ultraviolet Fourier transform infrared and magnetic susceptibility. The DC electrical conductivity variation with the temperature in the region 298–498 K of the five polymer–metal complexes was determined. Doping with 5% ZnCl2 increased the electrical conductivity of the polymer at all temperatures investigated. All the polymer–metal complexes showed an increase in conductivity with an increase in temperature, which is a typical semiconductor behavior. The proposed structure of the complexes is (MLX2·mH2O)n. All the polymer–metal complexes are thermally stable, are insoluble in common organic solvents and have high melting points. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, we report a Kelvin probe microscopy investigation on the structural and electronic properties of gold and aluminum thin films evaporated on poly(3‐octyl‐thiophene) films. Our experimental setup allows us to perform scanning force microscopy (SFM) studies of the same area even if the sample is taken out of the SFM system for different processes (Au and Al evaporation). This allows a detailed study of the effect of adsorbed metal particles on the morphology and electrical properties of polymer thin films at the nanoscale. We found different behavior for both metals in morphology and electrical properties at the interface. These results can contribute to explain what happens at the metal–polymer interface of the devices when the metal contacts are grown. Thereby the observed nanoscale structural changes can be correlated with the overall performance of the fabricated devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1083–1093  相似文献   

6.
Aluminium‐based metal–organic framework (MOF) coatings on polystyrene bead surfaces were easily synthesized by reacting an intermediate metal hydroxide coating with an organic linker. Several different sizes of polystyrene beads were coated with aluminium metal hydroxide to construct Al@PS core–shell bead materials. The activated Al@PS core–shell beads were involved to make a homogenous MOF‐based layer in the presence of the organic linker. By using different sizes of the PS support the size of MOFs on the PS composites could be fine‐tuned under specific reaction conditions. MOF‐coated core–shell bead materials (Al‐1,4‐NDC@PS and MIL‐53(Al)@PS) were characterized using various analytical techniques. Al‐1,4‐NDC@PS and MIL‐53(Al)@PS were evaluated for solid‐phase microextraction (SPME) of hydrophobic polycyclic aromatic hydrocarbons (PAHs) and hydrophilic non‐steroidal anti‐inflammatory drugs (NSAIDs), respectively. Al‐1,4‐NDC@PS‐1000 displayed high extraction recoveries ranging from 79.2 % to 99.8 % in the SPME of PAHs. Meanwhile, MIL‐53(Al)@PS‐1000 showed 85.9–99.0 % extraction recoveries in the SPME of NSAIDs. These results show that the proposed approach holds potential to extract organic analytes on an industrial scale.  相似文献   

7.
Metal–polymer hybrid films are prepared by deposition of polymer‐coated PtCo nanoparticles onto block copolymer templates. For templating, a thin film of the lamella‐forming diblock copolymer poly(styrene‐b‐methyl methacrylate) P(S‐b‐MMA) is chemically etched and a topographical surface relief with 3 nm height difference is created. Two types of polymer‐grafted PtCo nanoparticles are compared to explore the impact of chemical selectivity versus the topographical effect of the nanotemplate. A preferable wetting of the polystyrene (PS) domains with poly(styrenesulfonate) (PSS)‐coated PtCo nanoparticles (instead of residing in the space between the domains) is observed. Our investigation reveals that the interaction between PSS‐coated nanoparticles and PS domains dominates over the topographical effects of the polymer surface. In contrast, a non‐selective deposition of poly(N‐vinyl‐2‐pyrrolidone) (PVP)‐coated PtCo nanoparticles and the formation of large metal‐particle aggregates on the film is observed.  相似文献   

8.
《先进技术聚合物》2018,29(6):1826-1833
In this paper, a new simple and environmentally friendly treatment technique for obtaining polymer nanocomposites with appropriate dielectric properties has been presented. Sheets of isotactic polypropylene and atactic polystyrene were immersed in 3 saturated water solutions of alkali metal salts (LiCl, NaCl, and KCl) at 2 fixed temperatures (23°C and 90°C), and 3 DC electrical potentials (+4 kV, −4 kV, and ground potential) were applied. A quantification of alkali metals in the polymer sheets was conducted by inductively coupled plasma optic emission spectrometry. The obtained concentration values were from 7.38·10−9 mol/cm3 to 1.25·10−7 mol/cm3. The qualitative analysis of potassium distribution in the polymer matrix was conducted by time‐of‐flight secondary ion mass spectrometry cross‐sectional record. The relative dielectric constant (ε′) of samples was investigated in the frequency range from 20 Hz to 9 MHz at the constant temperature of 22°C. Stable values of ε′ in fully measured frequency range were observed for both pure and treated samples. Next, the results of the dielectric spectroscopy measurements were compared and established the kind of treatment that provided the highest value of ε′. The relationship between the concentrations of alkali metals and the values of relative dielectric constant was determined for the samples obtained by a treatment at 90°C and +4 kV.  相似文献   

9.
This study investigates the resistive behavior of rod‐coated micrometer thick films of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on ultra‐low modulus (120– 130 kPa) polydimethylsiloxane (PDMS) substrate having scratch or microtrench‐type roughness patterns. On average, the films were found to remain electrically functional up to 23% axial strain with an average increase of three times in the value of the normalized resistance. The films were also found to remain conductive up to bending diameter of 4 mm with an average increase of 1.12 times their initial resistance. The rod‐coated PEDOT:PSS films on ultra‐low modulus PDMS having microtrench‐type roughness were also found to remain functional even after 1000 bending cycles at a bending diameter of 4 mm and even smaller with an increase in resistance that was on average 1.15 times their initial resistance. The films were found to fail firstly by cracking and thereby debonding from the substrate under the application of axial strain. On the other hand, the films exhibit no delamination under bending strains. The results from this investigation suggest that the polymer–polymer laminate has potential applicability in stretchable and flexible electronics and related applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 226–233  相似文献   

10.
Divinylsiloxane‐bisbenzocyclobutene (DVS‐bisBCB) polymer has very low dielectric constant and dissipation factor, good thermal stability, and high chemical resistance. The fracture toughness of the thermoset polymer is moderate due to its high crosslink density. A thermoplastic elastomer, polystyrene–polybutadiene–polystyrene triblock copolymer, was incorporated into the matrix to enhance its toughness. The cured thermoset matrix showed different morphology when the elastomer was added to the B‐staged prepolymer or when the elastomer was B‐staged with the DVS‐bisBCB monomer. Small and uniformly distributed elastomer domains were detected by transmission electron micrographs (TEM) in the former case, but TEM did not detect a separate domain in the latter case. A high percentage of the polystyrene–polybutadiene–polystyrene triblock copolymer could be incorporated into the DVS‐bisBCB thermoset matrix by B‐staging the triblock copolymer with the BCB monomer. The elastomer increased the fracture toughness of DVS‐bisBCB polymer as indicated by enhanced elongation at break and increased K1c values obtained by the modified edge‐lift‐off test. Elastomer modified DVS‐bisBCB maintained excellent electrical properties, high Tg and good thermal stability, but showed higher coefficient of linear thermal expansion values. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1591–1599, 2006  相似文献   

11.
A symmetrical 2‐thiopyrimidine based molecule with an expanded π‐electron system is synthesized and used to form a self‐assembled monolayer (SAM) on gold surfaces. Utilizing chemical vapor deposition a monolayer of (3‐mercaptopropyl)triethoxysilane is formed on silicon dioxide substrates. Both of these SAM coated substrates are characterized by X‐ray photoelectron spectroscopy and the growth of a coordination polymer built up from 5,5′‐(ethyne‐1,2‐diyl)bis(2‐hydroxyacetophenone) and copper(II) on dual SAM coated transducers is studied. After the deposition procedure on interdigital electrodes the electrical properties of the polymer are investigated performing resistive measurements. A significant change of the resistance, which depends on the surrounding atmosphere, proves the sensing behavior of the synthesized coordination polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 335–344  相似文献   

12.
The destabilization of the interface between a polymer and a metal surface is of considerable interest in several application areas, including the ongoing research on environmentally friendly pretreatments as a replacement for the Cr(VI)‐containing systems where the understanding of mechanisms and performance of a confined metal/polymer interface is of utmost importance. Processes at hidden interfaces are, however, difficult to analyze in detail and at relevant climatic conditions. This study has been divided in two parts, where the subject of Part I is the surface characterization by ATR‐FTIR Kretschmann and IRRAS spectroscopy of aluminum coated with an amino‐functional silane, and the interfacial analysis by ATR‐FTIR Kretschmann after further application of an epoxy film. This second part describes the interaction between the coated sample and an electrolyte. The analysis is performed by integrated in situ ATR‐FTIR Kretschmann and EIS, which requires model systems with evaporated metal films on an internal reflection element. Complementary analyses were also conducted on substrates in the absence of the metal film, and or in the absence of an epoxy top‐coat, respectively. Changes in the interfacial region were observed and assigned to the water uptake including swelling of the epoxy, and the formation of aluminium oxidation and hydration products. Complementary studies allowed the distinction between water uptake in the silane film and the epoxy, respectively, as well as reformations of the siloxane network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Melt mixing with a polymer is a novel strategy to modify the surface property of carbon nanotube (CNT) conveniently and efficiently. In melt mixing process, the shearing and thermal issues can make polymer component wrapped around nanotubes via π–π stacking interaction. In this study, polystyrene‐coated multi‐walled carbon nanotubes (MWNTs) was achieved through simple melt mixing of polystyrene with MWNTs. PS and MWNTs were first melt mixed at various melt time and temperatures to find the optimum condition for preparing of PS‐coated MWNTs. Subsequently, the stability of polystyrene interacted with MWNTs was estimated via ultrasonication and thermal gravimetric analysis (TGA). Finally, the physically modified MWNTs were used to enhance polystyrene. An obvious mechanical reinforcement can be achieved, which approves a huge potential of application of these modified MWNTs in practical composite products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The rheological behavior of solutions containing blends of poly(γ-benzyl-L -glutamate) (PBLG) and either the free acid or the zinc salt of lightly sulfonated polystyrene (SPS) was studied as a function of blend composition, polymer concentration, degree of sulfonation of the SPS, and the polypeptide molecular weight. The zinc salt of SPS formed a transition metal complex with the amine-end groups of the PBLG, and this resulted in an enhancement of the solution viscosity relative to a weighted average of the viscosities of the individual polymer solutions. The ZnSPS/PBLG solutions showed no anomalous time or shear dependencies. In contrast, solutions containing PBLG and the sulfonic acid derivative of SPS also had enhanced viscosities, but in addition, they exhibited time-dependent viscosities (thixotropic behavior) and shear thickening (dilatant behavior). This was attributed to a nonequilibrium structure of the interpolymer complex due to a competition between acid-amine and acid-ester interactions. Although the acid-amine interaction is enthalpically favored, when sufficient sulfonic acid groups were available, interactions between the sulfonic acid and the glutamate ester side groups of PBLG developed and this interaction promotes a helix-to-coil transition of the PBLG. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
We report the preparation of nanostructured adaptive polymer surfaces by diffusion of an amphihilic block copolymer toward the interface. The surface segregation of a diblock copolymer, polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA), occurred when blended with high molecular weight polystyrene employed as a matrix. On annealing, the polymer surfaces changed both the chemical composition and the hydrophilicity depending on the environment and pH, respectively. By exposure to either water vapor or air, the surface wettability varied between hydrophilic and hydrophobic. In addition, surface enrichment on diblock copolymer by water vapor annealing led to self‐assembly occurring at the interface. Hence, nanostructured domains can be observed by AFM in liquid media. Moreover, the PAA segments placed at the interface respond to pH and can switch from an extended hydrophilic state at basic pH values to a collapsed hydrophobic state in acidic media. Accordingly, the surface morphology changed from swelled micelles to nanometer size holes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2982–2990, 2010  相似文献   

16.
The self‐assembly of dispersed polymer‐coated ferromagnetic nanoparticles into micron‐sized one‐dimensional mesostructures at a liquid–liquid interface was reported. When polystyrene‐coated Co nanoparticles (19 nm) are driven to an oil/water interface under zero‐field conditions, long (≈ 5 μm) chain‐like assemblies spontaneously form because of dipolar associations between the ferromagnetic nanoparticles. Direct imaging of the magnetic assembly process was achieved using a recently developed platform consisting of a biphasic oil/water system in which the oil phase was flash‐cured within 1 s upon ultraviolet light exposure. The nanoparticle assemblies embedded in the crosslinked phase were then imaged using atomic force microscopy. The effects of time, temperature, and colloid concentration on the self‐assembly process of dipolar nanoparticles were then investigated. Variation of either assembly time t or temperature T was found to be an interchangeable effect in the 1D organization process. Because of the dependence of chain length on the assembly conditions, we observed striking similarities between 1D nanoparticle self‐assembly and polymerization of small molecule monomers. This is the first in‐depth study of the parameters affecting the self‐assembly of dispersed, dipolar nanoparticles into extended mesostructures in the absence of a magnetic field. © 2008 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 46: 2267–2277, 2008  相似文献   

17.
Macroporous functionalized polymer beads of poly(4‐vinylpyridine‐co‐1,4‐divinylbenzene) [P(VPy‐co‐DVB)] were prepared by a multistep polymerization, including a polystyrene (PS) shape template by emulsifier‐free emulsion polymerization, linear PS seeds by staged template suspension polymerization, and macroporous functionalized polymer beads of P(VPy‐co‐DVB) by multistep seeded polymerization. The polymer beads, having a cellular texture, were made of many small, spherical particles. The bead size was 10–50 μm, and the pore size was 0.1–1.5 μm. The polymer beads were used as supports for zirconocene catalysts in ethylene polymerization. They were very different from traditional polymer supports. The polymer beads could be exfoliated to yield many spherical particles dispersed in the resulting polyethylene particles during ethylene polymerization. The influence of the polymer beads on the catalytic behavior of the supported catalyst and morphology of the resulting polyethylene was investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 873–880, 2003  相似文献   

18.
The metal complexes of N, N′‐bis (o‐hydroxy acetophenone) propylene diamine (HPPn) Schiff base were supported on cross‐linked polystyrene beads. The complexation of iron(III), copper(II), and zinc(II) ions on polymer‐anchored HPPn Schiff base was 83.4, 85.7, and 84.5 wt%, respectively, whereas the complexation of these metal ions on unsupported HPPn Schiff base was 82.3, 84.5, and 83.9 wt%. The iron(III) complexes of HPPn Schiff base were octahedral in geometry, whereas copper(II) and zinc(II) ions complexes were square planar and tetrahedral. Complexation of metal ions increased the thermal stability of HPPn Schiff base. Catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in the presence of hydrogen peroxide. The polymer‐supported HPPn Schiff base complexes of iron(III) ions showed 73.0 wt% conversion of phenol and 90.6 wt% conversion of cyclohexene at a molar ratio of 1:1:1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 63.8 wt% conversion for phenol and 83.2 wt% conversion for cyclohexene. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 93.1 and 98.3 wt%, respectively with supported HPPn Schiff base complexes of iron(III) ions but was lower with HPPn Schiff base complexes of copper(II) and zinc(II) ions. Activation energy for the epoxidation of cyclohexene and phenol conversion with unsupported HPPn Schiff base complexes of iron(III) ions was 16.6 kJ mol?1 and 21.2 kJ mol?1, respectively, but was lower with supported complexes of iron(III) ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Conductive composite films of poly(styrene‐con‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007  相似文献   

20.
This article reports the effect of fiber diameter on the electrical resistance and heat generation of fibrous polyacrylonitrile (PAN) mats coated with polypyrrole during chemical in situ polymerization. Polypyrrole is one of the important intrinsically conducting polymers that perform similar to semiconductors. The electrical resistance of polypyrrole‐coated mats depends on the fiber diameter, the applied pressure on the surface of the mats, and the mat thickness. The electrical resistance of polypyrrole‐coated PAN fibrous mats decreases as fiber diameter decreases. Moreover, electrical resistance decreases considerably as the mat thickness as well as the applied pressure on it increases. It was also observed that the heat generated in polypyrrole‐coated PAN fibrous mats increases with voltage and duration of the applied voltage. Lower fiber diameter also leads to higher heat generation. Furthermore, electrical current increases rapidly in the initial stages of applying voltage and then shows a marginal increase. Considering their high specific surface area, nanofibers convey considerable improvement in the electrical conductivity as well as heat generation capacity of the mats made from them. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号