首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider the coupling of dual‐mixed finite elements and boundary elements to solve a mixed Dirichlet–Neumann problem of plane elasticity. We derive an a‐posteriori error estimate that is based on the solution of local Dirichlet problems and on a residual term defined on the coupling interface. The general error estimate does not make use of any special finite element or boundary element spaces. Here the residual term is given in a negative order Sobolev norm. In practical applications, where a certain boundary element subspace is used, this norm can be estimated by weighted local L2‐norms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This article studies the least‐squares finite element method for the linearized, stationary Navier–Stokes equation based on the stress‐velocity‐pressure formulation in d dimensions (d = 2 or 3). The least‐squares functional is simply defined as the sum of the squares of the L2 norm of the residuals. It is shown that the homogeneous least‐squares functional is elliptic and continuous in the norm. This immediately implies that the a priori error estimate of the conforming least‐squares finite element approximation is optimal in the energy norm. The L2 norm error estimate for the velocity is also established through a refined duality argument. Moreover, when the right‐hand side f belongs only to , we derive an a priori error bound in a weaker norm, that is, the norm. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1289–1303, 2016  相似文献   

3.
We investigate an L2‐error estimate of a covolume scheme for the Stokes problem recently introduced by Chou (Math Comp 66 (1997), 85–104). We show the error in L2 norm is of second order provided the exact velocity is in H 3 and the exact pressure is in H2. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this paper, we consider the Crank‐Nicolson extrapolation scheme for the 2D/3D unsteady natural convection problem. Our numerical scheme includes the implicit Crank‐Nicolson scheme for linear terms and the recursive linear method for nonlinear terms. Standard Galerkin finite element method is used to approximate the spatial discretization. Stability and optimal error estimates are provided for the numerical solutions. Furthermore, a fully discrete two‐grid Crank‐Nicolson extrapolation scheme is developed, the corresponding stability and convergence results are derived for the approximate solutions. Comparison from aspects of the theoretical results and computational efficiency, the two‐grid Crank‐Nicolson extrapolation scheme has the same order as the one grid method for velocity and temperature in H1‐norm and for pressure in L2‐norm. However, the two‐grid scheme involves much less work than one grid method. Finally, some numerical examples are provided to verify the established theoretical results and illustrate the performances of the developed numerical schemes.  相似文献   

5.
In this paper, we consider the mark and cell (MAC) method for Darcy‐Stokes‐Brinkman equations and analyze the stability and convergence of the method on nonuniform grids. Firstly, to obtain the stability for both velocity and pressure, we establish the discrete inf‐sup condition. Then we introduce an auxiliary function depending on the velocity and discretizing parameters to analyze the super‐convergence. Finally, we obtain the second‐order convergence in L2 norm for both velocity and pressure for the MAC scheme, when the perturbation parameter ? is not approaching 0. We also obtain the second‐order convergence for some terms of ∥·∥? norm of the velocity, and the other terms of ∥·∥? norm are second‐order convergence on uniform grid. Numerical experiments are carried out to verify the theoretical results.  相似文献   

6.
In this article we apply the subdomain‐Galerkin/least squares method, which is first proposed by Chang and Gunzburger for first‐order elliptic systems without reaction terms in the plane, to solve second‐order non‐selfadjoint elliptic problems in two‐ and three‐dimensional bounded domains with triangular or tetrahedral regular triangulations. This method can be viewed as a combination of a direct cell vertex finite volume discretization step and an algebraic least‐squares minimization step in which the pressure is approximated by piecewise linear elements and the flux by the lowest order Raviart‐Thomas space. This combined approach has the advantages of both finite volume and least‐squares methods. Among other things, the combined method is not subject to the Ladyzhenskaya‐Babus?ka‐Brezzi condition, and the resulting linear system is symmetric and positive definite. An optimal error estimate in the H1(Ω) × H(div; Ω) norm is derived. An equivalent residual‐type a posteriori error estimator is also given. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 738–751, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10030.  相似文献   

7.
The upwind finite difference fractional steps methods are put forward for the two‐phase compressible displacement problem. Some techniques, such as calculus of variations, multiplicative commutation rule of difference operators, decomposition of high‐order difference operators, and prior estimates, are adopted. Optimal order estimates in L2 norm are derived to determine the error in the approximate solution. This method has already been applied to the numerical simulation of seawater intrusion and migration‐accumulation of oil resources. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 67–88, 2003  相似文献   

8.
We develop a CFL‐free, explicit characteristic interior penalty scheme (CHIPS) for one‐dimensional first‐order advection‐reaction equations by combining a Eulerian‐Lagrangian approach with a discontinuous Galerkin framework. The CHIPS method retains the numerical advantages of the discontinuous Galerkin methods as well as characteristic methods. An optimal‐order error estimate in the L2 norm for the CHIPS method is derived and numerical experiments are presented to confirm the theoretical estimates. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
A linearized three‐step backward differential formula (BDF) Galerkin finite element method (FEM) is developed for nonlinear Sobolev equation with bilinear element. Temporal error and spatial error are discussed through introducing a time‐discrete system. Solutions of the time‐discrete system are bounded in H2‐norm by the temporal error. Superconvergence results of order O(h2 + τ3) in H1‐norm for the original variable are deduced based on the spatial error. Some new tricks are utilized to get higher order of the temporal error and the spatial error. At last, two numerical examples are provided to support the theoretical analysis. Here, h is the subdivision parameter, and τ is the time step.  相似文献   

10.
We consider convergence of the covolume or finite volume element solution to linear elliptic and parabolic problems. Error estimates and superconvergence results in the Lp norm, 2 ≤ p ≤ ∞, are derived. We also show second‐order convergence in the Lp norm between the covolume and the corresponding finite element solutions and between their gradients. The main tools used in this article are an extension of the “supercloseness” results in Chou and Li [Math Comp 69(229) (2000), 103–120] to the Lp based spaces, duality arguments, and the discrete Green's function method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 463–486, 2003  相似文献   

11.
In this paper, the stabilized mixed finite element methods are presented for the Navier‐Stokes equations with damping. The existence and uniqueness of the weak solutions are proven by use of the Brouwer fixed‐point theorem. Then, optimal error estimates for the H1‐norm and L2‐norm of the velocity and the L2‐norm of the pressure are derived. Moreover, on the basis of the optimal L2‐norm error estimate of the velocity, a stabilized two‐step method is proposed, which is more efficient than the usual stabilized methods. Finally, two numerical examples are implemented to confirm the theoretical analysis.  相似文献   

12.
We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.  相似文献   

13.
This paper is devoted to the analysis of a linearized theta‐Galerkin finite element method for the time‐dependent coupled systems resulting from microsensor thermistor problems. Hereby, we focus on time discretization based on θ‐time stepping scheme with including the standard Crank‐Nicolson ( ) and the shifted Crank‐Nicolson ( , where δ is the time‐step) schemes. The semidiscrete formulation in space is presented and optimal error bounds in L2‐norm and the energy norm are established. For the fully discrete system, the optimal error estimates are derived for the standard Crank‐Nicolson, the shifted Crank‐Nicolson, and the general case where with k=0,1 . Finally, numerical simulations that validate the theoretical findings are exhibited.  相似文献   

14.
A residual‐type a posteriori error estimator is proposed and analyzed for a modified weak Galerkin finite element method solving second‐order elliptic problems. This estimator is proven to be both reliable and efficient because it provides computable upper and lower bounds on the actual error in a discrete H1‐norm. Numerical experiments are given to illustrate the effectiveness of the this error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 381–398, 2017  相似文献   

15.
On the basis of rectangular partition and bilinear interpolation, this article presents alternating direction finite volume element methods for two dimensional parabolic partial differential equations and gives three computational schemes, one is analogous to Douglas finite difference scheme with second order splitting error, the second has third order splitting error, and the third is an extended locally one dimensional scheme. Optimal L2 norm or H1 semi‐norm error estimates are obtained for these schemes. Finally, two numerical examples illustrate the effectiveness of the schemes. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

16.
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L2 and an H2 type norm for both semi‐discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.  相似文献   

17.
In this article, we study the edge residual‐based a posteriori error estimates of conforming linear finite element method for nonmonotone quasi‐linear elliptic problems. It is proven that edge residuals dominate a posteriori error estimates. Up to higher order perturbations, edge residuals can act as a posteriori error estimators. The global reliability and local efficiency bounds are established both in H 1‐norm and L 2‐norm. Numerical experiments are provided to illustrate the performance of the proposed error estimators. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 813–837, 2014  相似文献   

18.
We study a new class of finite elements so‐called composite finite elements (CFEs), introduced earlier by Hackbusch and Sauter, Numer. Math., 1997; 75:447‐472, for the approximation of nonlinear parabolic equation in a nonconvex polygonal domain. A two‐scale CFE discretization is used for the space discretizations, where the coarse‐scale grid discretized the domain at an appropriate distance from the boundary and the fine‐scale grid is used to resolve the boundary. A continuous, piecewise linear CFE space is employed for the spatially semidiscrete finite element approximation and the temporal discretizations is based on modified linearized backward Euler scheme. We derive almost optimal‐order convergence in space and optimal order in time for the CFE method in the L(L2) norm. Numerical experiment is carried out for an L‐shaped domain to illustrate our theoretical findings.  相似文献   

19.
The coupled nonlinear Schrödinger–Boussinesq (SBq) equations describe the nonlinear development of modulational instabilities associated with Langmuir field amplitude coupled to intense electromagnetic wave in dispersive media such as plasmas. In this paper, we present a conservative compact difference scheme for the coupled SBq equations and analyze the conservative property and the existence of the scheme. Then we prove that the scheme is convergent with convergence order O(τ2 + h4) in L‐norm and is stable in L‐norm. Numerical results verify the theoretical analysis.  相似文献   

20.
In this article we analyze the L2 least‐squares finite element approximations to the incompressible inviscid rotational flow problem, which is recast into the velocity‐vorticity‐pressure formulation. The least‐squares functional is defined in terms of the sum of the squared L2 norms of the residual equations over a suitable product function space. We first derive a coercivity type a priori estimate for the first‐order system problem that will play the crucial role in the error analysis. We then show that the method exhibits an optimal rate of convergence in the H1 norm for velocity and pressure and a suboptimal rate of convergence in the L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号