首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selected ion flow tube mass spectrometry (SIFT-MS) is a sensitive technique capable of measuring volatile compounds (VCs) in complex gas mixtures in real time; it is now being applied to breath analysis. We investigated the effect of inhalers containing chlorofluorocarbons (CFCs) on the detection and measurement of haloamines in human breath. SIFT-MS mass scans (MS) and selected ion monitoring (SIM) scans were performed on three healthy non-smoking volunteers before and after inhalation of the following medications: Combivent™ metered-dose inhaler (MDI) (CFC-containing); Ventolin™ MDI (CFC-free); Atrovent™ MDI (CFC-free), Beclazone™ MDI (CFC-containing); Duolin™ nebuliser. In addition, the duration of the persistence of the mass/charge ratios was measured for 20 h. Inhalers containing CFCs generated large peaks at m/z 85, 87, 101, 103 and 105 in vitro and in vivo, consistent with the predicted product ions of CFCs 12, 114 and 11. No such peaks were seen with Duolin™ via nebuliser, or CFC-free MDIs. We conclude that measurement of VCs, such as haloamines, with product ions of similar m/z values to the ions found for CFCs would be significantly affected by the presence of CFCs in inhalers. This issue needs to be accounted for prior to the measurement of VCs in breath in people using inhalers containing CFCs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We report a fast, sensitive, real-time method to measure monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry (SIFT-MS). Relative rate coefficients and product distributions are reported for the reagent ions H3O+ and O2 +. Rapid reactions with the haloamines were observed with H3O+ and O2 + but no fast reaction was found with NO+. A slow reaction between NO+ and dichloramine was observed. We demonstrate the feasibility of determining these compounds in a single human breath for which the limit of detection is approaching 10 parts per billion (ppb). We also report preliminary measurements of these compounds in the breath of individuals where the concentrations of bromamine and chloramine ranged from 10 to 150 ppb.  相似文献   

3.
This paper describes how weakly bound adduct ions form when the precursor ions used in selected ion flow mass spectrometry, SIFT-MS, analyses, viz. H3O+, NO+ and O2+, associate with the major components of air and exhaled breath, N2, O2 and CO2. These adduct ions, which include H3O+N2, H3O+CO2, NO+CO2, O2+O2 and O2+CO2, are clearly seen when dry air containing 5% CO2 (typical of that in exhaled breath) is analysed using SIFT-MS. These adduct ions must not be misinterpreted as characteristic product ions of trace gases; if so, serious analytical errors can result. However, when exhaled breath is analysed these adduct ions are partly removed by ligand switching reactions with the abundant water molecules and the problems they represent are alleviated. But the small fractions of the adduct ions that remain in the SIFT-MS spectra, and especially when they are isobaric with genuine characteristic product ion of breath trace gases, can result in erroneous quantifications; such is the case for H3O+N2 interfering with breath ethanol analysis and H3O+CO2 with breath acetaldehyde analysis. However, these difficulties can be overcome when the isobaric adduct ions are properly recognised and excluded from the analyses; then these two important compounds can be properly quantified in breath. The presence of O2+CO2 in the product ion spectra interferes with the analysis of CS2 present at low levels in exhaled breath. It is likely that similar problems will occur as other trace compounds are detected in exhaled breath when consideration will have to be given to the possibility of overlapping between their characteristic product ions and ions produced by hitherto unknown reactions. Similar problems are evident in other systems; for example, H3O+CH4 adduct ions are observed in both SIFT-MS analyses of methane rich mixtures like biologically generated waste gases and in model planetary atmospheres.  相似文献   

4.
A study has been carried out of the decay of ethanol in mouth‐exhaled and nose‐exhaled breath of two healthy volunteers following the ingestion of various doses of alcohol at different dilutions in water. Concurrent analyses of sequential single breath exhalations from the two volunteers were carried out using selected ion flow tube mass spectrometry, SIFT‐MS, on‐line and in real time continuously over some 200 min following each alcohol dose by simply switching sampling between the two volunteers. Thus, the time interval between breath exhalations was only a few minutes, and this results in well‐defined decay curves. Inspection of the mouth‐exhaled and nose‐exhaled breath data shows that mouth contamination of ethanol diminished to insignificant levels after a few minutes. The detailed results of the analyses of nose‐exhaled breath show that the peak levels and the decay rates of breath ethanol are dependent on the ethanol dose and the volume of ethanol/water mixture ingested. From these data, both the efficiency of the first‐pass metabolism of ethanol and the indications of gastric emptying rates at the various doses and ingested volumes have been obtained for the two volunteers. Additionally and simultaneously, acetaldehyde, acetic acid and acetone were measured in each single breath exhalation. Acetaldehyde, the primary product of ethanol metabolism, is seen to track the breath ethanol. Acetic acid, a possible secondary product of this metabolism, was detected in the exhaled breath, but was shown to largely originate in the oral cavity. Breath acetone was seen to increase over the long period of measurement due to the depletion of nutrients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N‐phenylpropanamide. 1‐(2‐Phenylethyl)‐1,2,3,6‐tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS3) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium‐labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Selected ion flow tube mass spectrometry (SIFT-MS) detects and quantifies in real time the trace gases, M, in air/breath samples introduced directly into a flow tube. Inevitably, relatively large partial pressures of water vapour are introduced with the sample and the water molecules become involved in the ion chemistry on which this analytical technique depends. When H(3)O(+) ions are used as the precursors for chemical ionisation and SIFT mass spectrometric analyses of M, they generally result in the formation of MH(+) ions. Also, when water vapour is present the H(3)O(+) ions are partially converted to hydrated hydronium ions, H(3)O(+).(H(2)O)(1,2,3). The latter may act as precursor ions and produce new product ions like MH(+).(H(2)O)(1,2,3) via ligand switching and association reactions. This ion chemistry and the product ions that result from it must be accounted for in accurate analyses by SIFT-MS. In this paper we describe the results of a detailed SIFT study of the reactions involved in the quantification of acetone, ethyl acetate, diethyl ether, methanol, ethanol, ammonia and methyl cyanide by SIFT-MS in the presence of water vapour. This study was undertaken to provide the essential data that allows more accurate analyses of moist air and breath by SIFT-MS to be achieved. It is shown using our standard analysis procedure that the error of SIFT-MS quantification caused by the presence of water vapour is typically 15%. An improved analysis procedure is then presented that is shown to reduce this error to typically 2%. Additionally, some fundamental data have been obtained on the association reactions of protonated organic molecules, MH(+) ions, with water molecules forming MH(+).H(2)O monohydrate ions. For some types of M, reaction sequences occur that lead to the formation of dihydrate and trihydrate ions.  相似文献   

7.
Multiple reaction monitoring (MRM) ratios as provided by tandem mass spectrometers are used to confirm positive residue findings (e.g. veterinary drugs or pesticides). The Commission Decision 2002/657/EEC defines tolerance levels for MRM ratios, which are intended to prevent the reporting of false positives. This paper reports findings where blank sample extracts have been spiked by a drug (difloxacin) and the corresponding measured MRM ratios significantly deviated from MRM ratios observed in matrix‐free solution. The observation was explained by the formation of two different [M+H]+ analyte ions within the electrospray ionization (ESI) interface. These two ions vary only by the site of analyte protonation. Since they are isobaric, they are equally transmitted through the first quadrupole, but are differently fragmented in the collision chamber. The existence of two isobaric ions was deduced by statistical data and the observation of a doubly charged analyte ion. It was hypothesized that the combined presence of [M+H]+ and [M+2H]2+ implies the existence of two different singly charged ion species differing only by the site of protonation. Low‐ and high‐energy interface‐induced fragmentation was performed on the samples. The surviving precursor ion population was mass selected and again fragmented in the collision chamber. Equal product ion spectra would be expected. However, very different product ion spectra were observed for the two interface regimes. This is consistent with the assumption that the two postulated isobaric precursor ions show different stability in the interface. Hence the abundance ratio among the two types of surviving precursor ions will shift and change the resulting product ion spectra. The existence of the postulated singly charged ions with multiple chargeable sites was finally confirmed by successful ion mobility separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
With the future aim of using gas chromatography coupled with mass spectrometry to characterize the transformation products of estrone submitted to UV‐photolysis or to waste water treatment plants, an interpretation of the electron impact mass spectrum of estrone is presented. Fragmentation mechanisms are proposed on the basis of high‐resolution measurements performed with a magnetic sector analyzer. Multiple‐stage mass spectrometry experiments were carried out using an ion trap mass spectrometer. The structures proposed for product ions were confirmed by the m/z shifts observed in the estrone‐d4 and estrone methyl ether electron ionization mass spectra. If the formation of some of the most abundant ions may easily be explained by α‐cleavages and retro‐Diels‐Alder type rearrangements, complex mechanisms need to be considered to rationalize the formation of others. Isotope labelling allows discrimination of isobaric ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We have carried out a study of the reactions of H(3)O(+), NO(+) and O(2) (+), the commonly used precursor ions for selected ion flow tube mass spectrometry (SIFT-MS), with three anaesthetic gases, halothane, isoflurane and sevoflurane. The motivation for this study was to provide the necessary kinetic data that would allow the quantification of these anaesthetic gases in operating theatre air and in the breath of theatre staff and post-operative patients. A clear negative result from these experiments is that NO(+), although undergoing the simplest chemistry, is unsuitable for this SIFT-MS application. However, although the ion chemistry of H(3)O(+) and O(2) (+) with these compounds is very complex, there being several product ions in each reaction, many of which react rapidly with water molecules, monitor ions have been identified for all three anaesthetic gases when using H(3)O(+) and O(2) (+) as precursor ions. The detailed ion chemistry is discussed and the specific monitor ions are indicated. Hence, the feasibility of on-line breath monitoring is demonstrated by simple examples. These studies have opened the way to measurements in the clinical environment.  相似文献   

10.
Selected ion flow tube mass spectrometry, (SIFT-MS), is a technique for simultaneous real-time quantification of several trace gases in air and exhaled breath. It relies on chemical ionization of the trace gas molecules in air/breath samples introduced into helium carrier gas, using H(3)O(+), NO(+) and O(2)(+) reagent (precursor ions). Reactions between the precursor ions and the trace gas molecules proceed for an accurately defined time, the precursor and product ions being detected and counted by a downstream mass spectrometer. Absolute concentrations of trace gases in single breath exhalation can be determined by SIFT-MS down to parts-per-billion (ppb) levels, obviating sample collection into bags or onto traps. Calibration using chemical standards is not required, as the concentrations are calculated using the known reaction rate constants and measured flow rates and pressures. SIFT-MS has been used for many pilot investigations in several areas of research, especially as a non-invasive breath analysis tool to investigate physiological processes in humans and animals, for clinical diagnosis and for therapeutic monitoring. Examples of the results obtained from several such studies are outlined to demonstrate the potential of SIFT-MS for trace gas analysis of air, exhaled breath and the headspace above liquids.  相似文献   

11.
选择离子流动管质谱及其在痕量气体分析中的应用   总被引:7,自引:1,他引:6  
王天舒 《分析化学》2005,33(6):887-893
选择离子流动管质谱(SIFT-MS)结合流动管技术、化学电离和质谱,有选择地使用F13O^ 、NO^ 和O2^ 初始离子,可在几秒之内对空气、呼吸气体和液表蒸气中的痕量气(如乙醇、乙醛、丙酮、氨和2-甲基丁二烯等,行多组分实时在线分析。介绍了选择离子流动管(SIFT)技术、SIFT-MS的分析方法及其物理和离子化学基础、SIFT-MS在不同领域的痕量气体分析中的应用。  相似文献   

12.
The reactions of carbon dioxide, CO2, with the precursor ions used for selected ion flow tube mass spectrometry, SIFT‐MS, analyses, viz. H3O+, NO+ and O, are so slow that the presence of CO2 in exhaled breath has, until recently, not had to be accounted for in SIFT‐MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H3O+CO2, formed by the slow association reaction of the precursor ion H3O+ with CO2 molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT‐MS instruments now allows accurate quantification of CO2 in breath using the level of the H3O+CO2 adduct ion. However, this is complicated by the rapid reaction of H3O+CO2 with water vapour molecules, H2O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three‐body association reaction of H3O+ with CO2 and its rapid loss in the two‐body reaction with H2O molecules. It is seen that the signal level of the H3O+CO2 adduct ion is sensitively dependent on the humidity (H2O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT‐MS software and kinetics library that allows accurate measurement of CO2 levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO2 can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts‐per‐billion. This has added a further dimension to the analysis of major and trace compounds in breath using SIFT‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Following the observation that propanol is present in the breath samples of cystic fibrosis (CF) patients infected by Pseudomonas aeruginosa (PA), a study of the reactions of H(3)O(+), NO(+) and O(2) (+.) with 1-propanol and 2-propanol has been conducted using selected ion flow tube mass spectrometry (SIFT-MS). In this study the number and the distribution of the product ions from NO(+) reactions with the two propanol isomers under humid air conditions were able to differentiate between the two isomers. The reaction mechanisms and the structures of the product ions for these reactions, especially those with H(3)O(+) and NO(+), have been proposed. As an example, 2-propanol was shown to be present in a breath sample from one CF patient infected with PA, and also in a PA isolate from another CF patient grown on Pseudomonas-selective media. The results of this study allow an analytical procedure to be advanced for the analysis of the two propanol isomers, which can also be utilised in other applications.  相似文献   

14.
Infection by Pseudomonas aeruginosa (PA) is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Breath analysis could potentially be a useful diagnostic of such infection, and analyses of volatile organic compounds (VOCs) emitted from PA cultures are an important part of the search for volatile breath markers of PA lung infection. Our pilot experiments using solid‐phase microextraction, SPME and gas chromatography/mass spectrometric (GC/MS) analyses of volatile compounds produced by PA strains indicated a clear presence of methyl thiocyanate. This provided a motivation to develop a method for real‐time online quantification of this compound by selected ion flow tube mass spectrometry, SIFT‐MS. The kinetics of reactions of H3O+, NO+ and O2+? with methyl thiocyanate at 300 K were characterized and the characteristic product ions determined (proton transfer for H3O+, rate constant 4.6 × 10–9 cm3 s–1; association for NO+, 1.7 × 10–9 cm3 s–1 and nondissociative charge transfer for O2+?, 4.3 × 10–9 cm3 s–1). The kinetics library was extended by a new entry for methyl thiocyanate accounting for overlaps with isotopologues of hydrated hydronium ions. Solubility of methyl thiocyanate in water (Henry's law constant) was determined using standard reference solutions and the linearity and limits of detection of both SIFT‐MS and SPME‐GC/MS methods were characterized. Thirty‐six strains of PA with distinct genotype were cultivated under identical conditions and 28 of them (all also producing HCN) were found to release methyl thiocyanate in headspace concentrations greater than 6 parts per billion by volume (ppbv). SIFT‐MS was also used to analyze the breath of 28 children with CF and the concentrations of methyl thiocyanate were found to be in the range 2–21 ppbv (median 7 ppbv). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We describe how selected ion flow tube mass spectrometry (SIFT-MS) can be used to determine the absolute humidity of air, breath and liquid headspace samples. This involves the determination of the relative count rates of the H3O+ ions and those H3O+.(H2O)(1,2,3) hydrate ions that inevitably form in the helium carrier gas when humid samples are being analysed by SIFT-MS using H3O+ precursor ions. This requires an understanding of the kinetics of hydrated hydronium ion formation, the involvement of mass discrimination in the analytical quadrupole mass spectrometer and the decreased diffusive loss of the heavier hydrates along the flow tube. Thus, we show that the humidity of breath and liquid headspace samples, typically at the few percent level, can be directly obtained on-line to the SIFT-MS instrument along with the concentrations of trace gases, which are present at much lower levels. We emphasise the value of parallel humidity measurements in ensuring good real-time sampling of breath and liquid headspace and the value of such measurements to trace gas analysis using SIFT-MS.  相似文献   

16.
Selected ion flow tube mass spectrometry, (SIFT-MS), involves the partial conversion of mass-selected precursor ions to product ions in their reactions with the trace gases in an air sample that is introduced into helium carrier gas in a flow tube. The precursor and product ions are then detected and counted by a downstream quadrupole mass spectrometer. Quantification of particular trace gases is thus achieved from the ratio of the total count rate of the product ions to that for the precursor ions. However, it is important to appreciate that in this ion chemistry the light precursor ions (usually H3O+ ions) are invariably converted to heavier product ions. Hence, the product ions diffuse to the flow tube walls more slowly and thus they are more efficiently transported to the downstream mass spectrometer sampling orifice. This phenomenon we refer to as diffusion enhancement. Further, it is a well-known fact that discrimination can occur against ions of large mass-to-charge ratio, (m/z), in quadrupole mass spectrometers. If not accounted for, diffusion enhancement usually results in erroneously high trace gas concentrations and mass discrimination results in erroneously low concentrations. In this experimental investigation, we show how both these counteracting effects can be accounted for to increase the accuracy of SIFT-MS quantification. This is achieved by relating the currents of ions of various m/z that arrive at the downstream mass spectrometer sampling orifice disc to their count rates at the ion detector after mass analysis. Thus, both diffusion enhancement and mass discrimination are parameterized as a function of m/z and these are combined to provide an overall discrimination factor for the particular analytical instrument.  相似文献   

17.
In selected ion flow tube mass spectrometry, SIFT‐MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H2CO, H2S and notably CO2. To date, the analysis of methane has not been considered, since it is known to be unreactive with H3O+ and NO+, the most important precursor ions for SIFT‐MS analyses, and it reacts only slowly with the other available precursor ion, O. However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O/CH4 reaction that produces CH3O ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH3O analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT‐MS. However, the associated limit of detection is rather high, at 0.2 parts‐per‐million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT‐MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near‐ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT‐MS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Glycerophospholipids are a highly abundant and diverse collection of biologically relevant lipids, and distinction between isomeric and isobaric species is a fundamental aspect for confident identification. The ability to confidently assign a unique structure to a glycerophospholipid of interest is dependent on determining the number and location of the points of unsaturation and assignment of acyl chain position. The use of high‐energy electrons (>20 eV) to induce gas‐phase dissociation of intact precursor ions results in diagnostic product ions for localizing double‐bond positions and determining acyl chain assignment. We describe a high‐resolution, tandem mass spectrometry method for structure characterization of glycerophospholipids using electron‐induced dissociation (EID). Furthermore, the inclusion of nomenclature to systematically assign bond cleavage sites with acyl chain position and double‐bond location enables a uniform platform for lipid identification. The EID methodology detailed here combines novel application of an electron‐based dissociation technique with high‐resolution mass spectrometry that facilitates a new experimental approach for lipid biomarker discovery and validation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The 1,2‐dichloroethane (DCE)/water interface, with an anionic surfactant, dinonylnaphthalenesulfonate (DNNS?), being present in DCE, was utilized for label‐free detection of albumin. An oil/water‐type flow cell was prepared using a porous PTFE tube and dipping the tube in the DCE solution containing DNNS?. This flow cell provided a well‐defined current response linear to the albumin concentration up to 10 µM with a detection limit of 1.2 µM. The current response is due to the interfacial adsorption of albumin molecules depending on the Galvani potential difference. Possible interference from creatinine in the urine could be avoided by a conventional dialysis treatment.  相似文献   

20.
The aim of this study was to investigate the fragmentation behavior induced by low‐energy collision‐induced dissociation (LE‐CID) of four selected antioxidants applied in lubricants, by two different types of ion trap mass spectrometers: a three‐dimensional ion trap (3D‐IT) and a linear IT (LIT) Orbitrap MS. Two sterically hindered phenols and two aromatic amines were selected as model compounds representing different antioxidant classes and were characterized by positive‐ion electrospray ionization (ESI) and LE‐CID. Various types of molecular ions (e.g. [M]+?, [M + H]+, [M + NH4]+ or [M + Na]+) were used as precursor ions generating a significant number of structurally relevant product ions. Furthermore, the phenolic compounds were analyzed by negative‐ion ESI. For both IT types applied for fragmentation, the antioxidants exhibited the same unusual LE‐CID behavior: (1) they formed stable radical product ions and (2) C? C bond cleavages of aliphatic substituents were observed and their respective cleavage sites depended on the precursor ion selected. This fragmentation provided information on the type of structural isomer usually not obtainable for branched aliphatic substituents utilizing LE‐CID. Comparing the two instruments, the main benefit of applying the LIT‐Orbitrap was direct access to elemental composition of product ions enabling unambiguous interpretation of fragmentation trees not obtainable by the 3D‐IT device (e.g. loss of isobaric neutrals). It should be emphasized that the types of product ions formed do not depend on the type of IT analyzer applied. For characterizing degradation products of antioxidants, the LIT‐Orbitrap hybrid system, allowing the determination of accurate m/z values for product ions, is the method of choice. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号