首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies on graphite flakes with a lateral size greater than 50 μm, having a large number of stacked collapse blocks, are neglected and replaced by graphene nanosheets or by powdered graphite, which can be obtained from graphite through chemical or physical exfoliation, as filler in polymer composites. Besides, the production of graphene nanosheets or the purification of powdered graphite uses a high concentration of strong and toxic acids that pollutes the environment. These processes are extremely time-consuming and generate an expensive product. Composites of poly(vinylidene fluoride) (PVDF) were prepared via extrusion with graphite flakes with up to 60 μm thick and 700 μm lateral size, in the range from 0.1 to 5% m/m. The quality of graphite flakes was analyzed by thermogravimetric analysis, x-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The increase in the graphite content in the PVDF matrix improved thermal resistance while showed an increase in the degree of crystallinity up to 25% by XRD and 43% by differential scanning calorimetry, approximately. Although the graphite acted as a nucleating agent, the content of the PVDF beta phase did not change. In the composites with up to 2.0% of graphite, a significant increase in mechanical properties, 13% modulus, and 36% in the storage modulus, evaluated by thermodynamic-mechanical analysis and tensile tests. In the analyses of time-domain nuclear magnetic resonance and oscillatory rheology in parallel plates, it was noticed that the increase of mechanical properties is due to the reinforcing effect along with the lubricant protection of stacked graphene sheets, attenuating the stress and friction between the polymer chains. Therefore, even though graphite flakes are inexpensive, that filler without any treatment at low contents are capable of significantly improving the performance of PVDF. This work suggests that these composites could be employed in applications such as electrical insulator with less energy dissipation, and also in oil pipelines, specifically to replace PVDF-based terpolymers or mixtures thereof, and polyamide-11 in flexible risers as a barrier layer, improving their performance.  相似文献   

2.
The effects of the inclusion of silver (Ag) nanoparticles on the physical properties, the crystallization behavior under shear, and the consequential crystalline morphology of poly(vinylidene fluoride) (PVDF) were investigated. Ag nanoparticles were melt compounded with PVDF in weight fractions of 20, 50, and 90 wt % (15.3 vol %). In the melt rheology, the presence of 20 wt % Ag nanoparticles had little effect on the dynamic viscosity of PVDF, but further addition increased it with the loading level. In Cole–Cole plot, all the melts gave a single master curve independent of the presence of Ag nanoparticles. As Ag loading level was increased, the overall crystallization process under shear was accelerated by reducing both induction time and crystallization time. The degree of acceleration was more notable at higher crystallization temperatures. The induction time and the crystallization time of 90 wt % loaded nanocomposites were promoted by 53.5 and 3.7%, respectively, at 145 °C and by 62 and 26.3%, respectively, at 160 °C, compared with those of pure PVDF. For the isothermal crystallization measured by differential scanning calorimeter, the critical Ag concentration, where overall crystallization was not promoted by further addition, occurred between 50 and 90 wt %. Both wide angle X‐ray diffraction profiles and Fourier transform infrared spectra of the samples crystallized under shear displayed the peaks for only α‐form crystals without new peak or peak shift regardless of the Ag loading and crystallization temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

3.
Poly(vinylidene fluoride) (PVDF) membranes were prepared by the isothermal immersion and precipitation of PVDF/N‐methyl‐2‐pyrollidone dope solutions in either harsh or soft nonsolvent baths. Low‐voltage field emission scanning electron microscopy imaging of the formed membranes at high magnifications (e.g., 300,000×) revealed their nanoscale fine structures, particularly dendrites observed on the surfaces of the macrovoids, cellular pores, and the membrane skin, which have never been successfully presented in the literature. Evidence of crystallization was also demonstrated by X‐ray diffraction and differential scanning calorimetry measurements. The phase diagram at 25 °C, including a binodal, tie lines, and a crystallization‐induced gelation line, was determined both experimentally and theoretically. These results were further used in mass‐transfer calculations to obtain diffusion trajectories and concentration profiles for the membrane region, which were useful for elucidating the relationship between the membrane preparation conditions and the obtained membrane morphologies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 830–842, 2004  相似文献   

4.
Polymorphism control of PVDF has been realized through electrospinning. PVDF fibrous membranes with fiber diameter in the range of 100 nm to several micrometers were produced by electrospinning and the crystal phase of electrospun PVDF fibers can be adjusted at the same time. Through the control of electrospinning parameters such as the solvent, electrospinning temperature, feeding rate, and tip‐to‐collector distance, PVDF fibrous membranes containing mainly α‐ or β‐ or γ‐phase could be fabricated successfully.

  相似文献   


5.
6.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

7.
Melt crystallization of poly(vinylidene fluoride) (PVF2) under a static electric field was studied by optical microscopy. For most crystallization temperatures a mixture of α and γ spherulites was obtained. The growth rate of the spherulites was measured in the plane perpendicular to the direction of the field. The effect of an electric field on the growth rate of the γ spherulites corresponds in a qualitative way with the dependence predicted theoretically for the primary nucleation of the nonpolar form. It is shown, that the growth rate of γ spherulites is always reduced by the electric field. This reduction was larger the lower the undercooling. In the case of γ spherulites the interpretation of the results is more complicated. Both the morphology and the growth rate of γ spherulites under an electric field depend on electrode configuration. An increase of the growth rate of γ spherulites in an electric field was detected only when the sample was in direct contact with both electrodes. Under these circumstances, γ spherulites nucleate and grow at the PVF2-positive electrode interface; and the increase of the growth rate is higher the lower the undercooling, and is greater in comparison with the decrease found for the nonpolar α phase. The reason for the sensitivity of the morphology of the γ form to the electrode configuration is not completely clear. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

9.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009  相似文献   

11.
Cryogenic mechanical milling successfully converted α-phase poly(vinylidene fluoride) (PVDF) powder into β-phase PVDF, as measured by wide-angle X-ray diffraction. The presence of β-phase PVDF became more pronounced with increased milling times over the limited time range evaluated. This was the first recorded instance of β-phase powders forming from the α phase through milling. These β-phase powders maintained their crystal structure during compression molding at 70 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 91–97, 2004  相似文献   

12.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

13.
Poly(vinylidene fluoride) (PVDF) chains with the same expanded state were obtained by dissolving PVDF resin in good solvent. Then, the crystallization of PVDF chains from mixed solvents composed of its good solvent and nonsolvent was investigated. N,N‐dimethylformamide (DMF) and ethanol were used as good solvent and nonsolvent of PVDF, respectively. The crystalline phases of PVDF were characterized by Fourier transform infrared (FTIR) spectroscopy and wide angle X‐ray diffraction (WAXD). For the crystallization of PVDF chains from mixed solvents, low ethanol content favored the formation of β phase, while high ethanol content resulted predominantly in the α phase. Different crystallization morphology was observed from the scanning electron microscopy (SEM) images. The obvious spherulite morphology disappeared with the increase in ethanol content in mixed solvent. According to thermal analyses, the crystallized PVDF from mixed solvents with high ethanol content had lower onset melting temperatures than that from low ethanol content. Smaller lamellar thickness calculated from WAXD data reasoned the low onset melting temperatures. The above results indicated that the crystallization of PVDF chains from mixed solvent was a “controlled” process by ethanol content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 575–581, 2010  相似文献   

14.
李慧慧 《高分子科学》2012,30(2):269-277
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions.It was found that neat PVDF forms largeγform spherulites with extraordinarily weak birefringence at 170℃.Adding 30%PBS makes PVDF exhibit intrigued flower-like spherulitic morphology.The growth mechanism was explained by the decrease of the supercooling and the materials dissipation.Increasing the PBS content to 70%favors the formation of ring banded spherulites.Temperature dependent experiments verify theα→γphase transition occurs from the junction sites of theαandγcrystals,while starts from the centers ofαspherulites in the blends.Ring banded structures could be observed in neat PVDF,70/30 blend and 30/70 blend when crystallized at 155℃,withoutγcrystals.The band period of PVDFαspherulites increases with crystallization temperature as well as the amount of PBS content.At 140℃,spherulites in neat PVDF lose their ring banded feature,while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.  相似文献   

15.
Thermoreversible gelation behavior of blend of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) in γ-butyrolactone solution was studied. Sol-gel transition temperature increased with the increase of polymer concentration, but was independent of the blend ratio of two polymers. An equation for gelation rate was derived, assuming that the gelation is a first-order reaction and that the gelation rate obeys an Arrhenius type. According to the equation, the growth index of gelation and supercooling temperature had a dominant effect on gelation rate. The growth index of gelation, which was calculated from the dependence of activation energy on the supercooling temperature in the isothermal gelation, varied with the blend ratio of two polymers. Growth index of gelation larger than 2 was obtained for the blend gels studied in this experiment. It may suggest that the multidimensional growth of gels occurs in such polymer blend solutions. X-ray diffraction and differential scanning calorimetry measurements showed existence of separate crystals due to each component of polymer in the blend gels. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Thermal analysis based on TGA (thermal gravimetric analysis) and DSC (differential scanning calorimeter) shows no significant degradation for PVDC which has been annealed at 210°C for less than 2 min. And the following recrystallization behavior at lower temperature (120°C) is also independent of the thermal treatment and is not affected by the difference of molecular weight. The degradation which includes dehydrochlorination at lower temperature and intramolecular cyclization or intermolecular crosslinking of the polyenes at higher temperature starts when the melting time at 210°C is more than 2 min, which also causes weight loss and heat exchange in the TGA and DSC thermograms. The recrystallization behavior of the degraded PVDC (staying at 210°C for more than 2 min) shows a strong dependence on the molecular weight. The crystallinity is decreased with the melting time at 210°C due to the increase of the degree of crosslinking. However, the POM (polarized optical microscopy) pictures and IR spectra show a favorable nucleation effect is present due to the formation of trichlorobenzene from the cyclization of the polyenes as nuclei. The crystallinity of the PVDC recrystallized at 120°C after staying at 210°C for more than 2 min is actually dependent on the molecular weight, melting time at 210°C, and cyclized or crosslinking types of degradation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3269–3276, 1999  相似文献   

17.
Dielectric and thermal characterizations were performed for poly (vinylidene fluoride) (PVDF)/poly (ethyl methacrylate) (PEMA) blends of different composition. The characteristics of PVDF β relaxation were shown to be little affected in the semicrystalline blends with PEMA. The relaxation strength, however, depends strongly on the PEMA content and a linear relation was found between the intensity of the β relaxation and the weight fraction of the PVDF crystal-amorphous interphase. Phase structures of the PVDF/PEMA blends are also proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The surface of PVDF film was selectively modified by wet chemistry. Treatment with aqueous LiOH produced HF-elimination and the emergence of an oxygen-containing functionality. The XPS analysis clearly indicated the presence of ketone-, ether(epoxide)-, and alcohol motifs. The percentage of alcohols could be significantly increased by reduction of the ketones with NaBH4 in 2-propanol, followed by reduction of the epoxides with DIBAL-H in hexane. Thus, the full treatment led to a PVDF surface displaying 7 to 16% of oxygen-containing units, of which about 60% consisted in alcohol motifs. The reactvity of the surface-displayed hydroxyl functions was assayed by radiolabeling with [3H]-Ac2O. © 1997 John Wiley & Sons, Inc. J. Polym Sci A: Polym Chem 35: 1227–1235, 1997  相似文献   

20.
王海军 《高分子科学》2015,33(2):349-361
The miscibility, isothermal crystallization kinetics and morphology of the poly(vinylidene fluoride)(PVDF)/poly(ethylene adipate)(PEA) blends have been studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). A depression of the equilibrium melting point of PVDF was observed. From the melting point data of PVDF, a negative but quite small value of the interaction parameter ?PVDF-PEA is derived using the Flory-Huggins equation, implying that PVDF shows miscibility with PEA to some extent. Nonisothermal and isothermal crystallization kinetics suggest that the crystallization rate of PVDF decreases with increasing the amount of PEA, and a contrary trend was found when PEA crystallizes with the increase of the amount of PVDF. It was further disclosed that the blend ratio and crystallization temperature affect the texture of PVDF spherulites greatly, which determines the subsequent crystallization of PEA. At high temperatures, e.g. 150 ℃, the band spacing of PVDF spherulites increases with the addition of PEA content and the spherulitic structure becomes more open. In this case, spherulitic crystallization of PEA is not observed for all blend compositions. At low temperatures, e.g. 130 ℃, for the PEA-rich blends, the interpenetrated structures are eventually formed by the penetration of the spherulites of PEA growing within the pre-existing PVDF spherulites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号