首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Photoinduced reactions of 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f]quinoline‐8‐carboxylic acid (SeQCA) were investigated in alkaline media (aqueous NaOH solutions) by electron paramagnetic resonance (EPR) spectroscopy, following the in situ formation of paramagnetic species. According to UV–Vis and nuclear magnetic resonance investigations, protonation (pH ≈ 11) and deprotonation (pH ≈ 13) of the imino hydrogen of the 4‐pyridone moiety has to be considered, reflected also in the different EPR spectra observed upon irradiation. Photoinduced generation of radicals was found only for carboxylate substituted SeQCA; other studied selenadiazoloquinolone derivatives, together with those substituted at the C(8) position (R = H, COOCH2CH3, COOCH3, COCH3 or CN), did not generate paramagnetic species during exposure. Consequently, photodecarboxylation was suggested as the decisive step, accompanied by the decomposition of the selenadiazole ring, resulting in the formation of ortho‐hydroxylate anions. EPR parameters elucidated from experimental EPR spectra obtained at pH ≈ 11 and pH ≈ 13 indicate the formation of oxygen‐centered radicals at the decarboxylated 4‐pyridone ring. EPR spin trapping experiments with nitromethane confirmed a very effective photoinduced electron transfer from all the selenadiazoloquinolones investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号