首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

2.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

3.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

4.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

5.
Multiblock polymers were prepared by combination of ATRP (CuBr/tris[(2‐pyridyl)methyl]amine) and RAFT polymerization involving cyclic trithiocarbonate (CTTC). In the combined polymerization system, the ATRP was introduced as constant radical source, CTTC underwent ring‐opening polymerization, and the incorporated trithiocarbonate moieties derived from CTTCs performed as RAFT agent. Through the integrated process, multiblock polymers containing predictable average block number together with controlled molecular weight of the blocks were prepared by one‐pot polymerization. The average block number of polymer was controlled by concentration ratio of CTTC to alkyl halide in ARTP, and the molecular weight of block were well regulated by concentration of CTTC and monomer conversion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2425–2429, 2010  相似文献   

6.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

7.
The novel trifunctional initiator, 1‐(4‐methyleneoxy‐2,2,6,6‐tetramethylpip‐eridinoxyl)‐3,5‐bi(bromomethyl)‐2,4,6‐trimethylbenzene (TEMPO‐2Br), was successfully synthesized and used to prepare the miktoarm star amphiphilic poly(styrene)‐(poly(N‐isopropylacrylamide))2 (PS(PNIPAAM)2) via combination of atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) techniques. Furthermore, the star amphiphilic block copolymer, poly (styrene)‐(poly(N‐isopropylacrylamide‐b‐4‐vinylpyridine))2 (PS(PNIPAAM‐b‐P4VP)2), was also prepared using PS(PNIPAAM)2 as the macroinitiator and 4‐vinylpyridine as the second monomer by ATRP method. The obtained polymers were well‐defined with narrow molecular weight distributions (Mw/Mn ≤ 1.29). Meanwhile, the self‐assembly behaviors of the miktoarm amphiphilic block copolymers, PS(PNIPAAM)2 and PS(PNIPAAM‐b‐P4VP)2, were also investigated. Interestingly, the aggregate morphology changed from sphere‐shaped micelles (4.7 < pH < 3.0) to a mixture of spheres and rods (1.0 < pH < 3.0), and rod‐shaped nanorods formed when pH value was below 1.0. The LCST of PS(PNIPAAM)2 (pH = 7) was about 31 °C and the LCST of PS(PNIPAAM‐b‐P4VP)2 was about 35 °C (pH = 3). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6304–6315, 2009  相似文献   

8.
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization was used to control the alternating copolymerization of styrene and 2,3,4,5,6‐pentaflurostyrene. The RAFT polymerization yields a high degree of control over the molecular weight of the polymers and does not significantly influence the reactivity ratios of the monomers. The controlled free‐radical polymerization could be initiated using AIBN at elevated temperatures or using a redox couple (benzoyl peroxide/N,N‐dimethylaniline) at room temperature, while maintaining control over molecular weight and dispersity. The influence of temperature and solvent on the molecular weight distribution and reactivity ratios were investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1555–1559  相似文献   

9.
10.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

11.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

14.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

15.
Novel xanthate RAFT agents, RAFT1‐5, designed for the preparation of a range of novel N‐vinyl pyrrolidone‐based polymeric materials with linear and star architectures via RAFT polymerization are reported. Ethyl pyrrolidone moiety was included in the structures of the xanthates as a part of R (RAFT1‐3) or Z group (RAFT4) to evaluate their effect on the polymerization and to impart homogeneity in the resulting products. The xanthates were designed to fragment to give primary (RAFT1), secondary (RAFT2 and 4), and tertiary radicals (RAFT 3) allowing evaluation of their effect on polymerization. RAFT5 was designed to produce polymeric materials with four‐arm architectures. RAFT1 showed comparable characteristics as conventional radical polymerization. RAFT2 and RAFT4 exhibited living/controlled polymerizations, owing to the combination of stable secondary radical species and incorporation of ethyl pyrrolidone moiety as the R and Z group, respectively. RAFT2 and RAFT5 gave first examples of random copolymers of NVP and VAc with linear and four‐arm star architectures, all exhibiting monomodal distributions and narrow dispersity. The four‐arm PVAc star was used as a macroCTA to synthesize amphiphilic four‐arm star PVAc‐block‐PNVP. The TEM investigation showed the formation of spherical micelles with an average diameter of about 60 nm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 775–786  相似文献   

16.
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005  相似文献   

17.
A facile synthetic pathway to miktoarm star copolymers with multiple arms has been developed by combining reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy “click” coupling reaction. Star polystyrene (PS) with aldehyde functionalized core was initially prepared by RAFT arm‐first technique via crosslinking of the preformed linear macro‐RAFT agents using a newly designed aldehyde‐containing divinyl compound 6,6′‐(ethane‐1,2‐diylbis(oxy))bis(3‐vinylbenzaldehyde) (EVBA). It was then used as a multifunctional coupling agent for the subsequent formation of the second generation poly(ethylene glycol) (PEG) arms via the click coupling reaction between its aldehyde groups and aminooxy‐terminated PEGs. The possible formation of PS‐PEG miktoarm star copolymer with Janus‐like segregated structure in cyclohexanone was also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3323–3330, 2010  相似文献   

18.
End group activation of polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of thiocarbonylthio end groups to thiols and subsequent reaction with excess of a bismaleimide. Poly(N‐isopropylacrylamide) (PNIPAM) was prepared by RAFT, and subsequent aminolysis led to sulfhydryl‐terminated polymers that reacted with an excess of 1,8‐bismaleimidodiethyleneglycol to yield maleimido‐terminated macromolecules. The maleimido end groups allowed near‐quantitative coupling with model low molecular weight thiols or dienes by Michael addition or Diels‐Alder reactions, respectively. Reaction of maleimide‐activated PNIPAM with another thiol‐terminated polymer proved an efficient means of preparing block copolymers by a modular coupling approach. Successful end group functionalization of the well‐defined polymers was confirmed by combination of UV–vis, FTIR, and NMR spectroscopy and gel permeation chromatography. The general strategy proved to be versatile for the preparation of functional telechelics and modular block copolymers from RAFT‐generated (co)polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5093–5100, 2008  相似文献   

19.
A photoinitiation process was investigated to develop a rapid and well‐controlled RAFT polymerization method applied to vinyl acetate (VAc) using methyl (ethoxycarbonothioyl)sulfanyl acetate (MESA) and bis(2,4,6‐trimethylbenzoyl)phenylphosphine oxide as the RAFT agent and photoinitiator, respectively. MESA was selected as the photochemically inert RAFT agent to minimize photolysis of the thiocarbonylthio groups during polymerization. Poly(vinyl acetate) with a prespecified well‐controlled molecular weight (MW) and a narrow MW distribution was successfully synthesized. The polymerization reaction proceeded as a living polymerization and was remarkably rapid compared with approaches that use thermally initiated processes with a very short induction period. A detailed kinetic study of the mechanism underlying the polymerization reaction, however, revealed that the chain ends containing xanthate moieties were not perfectly stable upon UV‐irradiation, and they generated radicals via homolytic cleavage. This reaction appeared to proceed by a combination of a degenerative transfer RAFT mechanism and a dissociation‐combination mechanism. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Tetrafunctional porphyrins‐containing trithiocarbonate groups were synthesized by an ordinary esterification method. This tetrafunctional porphyrin (TPP‐CTA) could be used as a chain transfer agent in a controlled reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to prepare well‐defined 4‐arm star‐shaped polymers. N,N‐Diethylacrylamide was polymerized using TPP‐CTA in 1,4‐dioxane. Poly(N,N‐diethylacrylamide) (PDEA) is known to be a thermo‐responsive polymer, and exhibits a lower critical solution temperature (LCST) in water. The star‐shaped PDEA polymer (TPP‐PDEA) was therefore also thermo‐responsive, as expected. The LCST of this polymer depended on its concentration in water, as confirmed by turbidity, dynamic light scattering (DLS), static light scattering (SLS), and 1H NMR measurements. The porphyrin cores were compartmentalized in PDEA shells in aqueous media. Below the LCST, the fluorescence intensity of TPP‐PDEA was about six times larger than that of a water‐soluble low molecular weight porphyrin compound (TSPP), whose fluorescence intensity was independent of temperature. Above the LCST, the fluorescence intensity of TPP‐PDEA decreased, while the intensity was about three times higher than that of TSPP. These observations suggested that interpolymer aggregation occurred due to the hydrophobic interactions of the dehydrated PDEA arm chains above the LCST, with self‐quenching of the porphyrin moieties arising from these interactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号