首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monobrominated polystyrene (PSBr) was prepared by ATRP, and the resulting chain ends were activated in the presence of radical traps to induce chain end‐coupling. In atom transfer radical coupling (ATRC) with radical trap assistance, to achieve significant coupling requires excess metal catalyst, ligand, and a reducing agent that is often additional metal. In this work, activators generated by electron transfer (AGET) and radical trap assistance are used in the ATRC sequence to successfully lead to chain‐end coupling without the need for the oxidatively unstable copper (I) and with environmentally friendlier agents in place of copper metal. High extents of coupling (Xc) were achieved using ascorbic acid (AA) as the reducing agent and copper(II) bromide as the oxidized version of the catalyst, and when combined with AGET ATRP to prepare the PSBr precursor, only a fraction of the total metal was required compared to traditional atom transfer reactions, while still retaining similar Xc values. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2113–2120  相似文献   

2.
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2‐methyl‐2‐nitrosopropane (MNP), selectively forming PSt‐PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap‐assisted, atom transfer radical coupling (RTA‐ATRC) was performed in a single pot at low temperature (35 °C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA‐ATRC conditions is consistent with the PStBr and PMABr having substantially different KATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ‐formed nitroxide end‐capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 °C) required for thermal cleavage. A PSt‐PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt‐PMA segements) was inert to thermolysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619–3626  相似文献   

3.
2‐Acrylamido‐2‐methyl‐N‐propanesulfonic acid (AMPSA) was successfully polymerized via atom transfer radical polymerization (ATRP) using a copper chloride/2,2′‐bipyridine (bpy) catalyst complex after in situ neutralization of the acidic proton in AMPSA with tri(n‐butyl)amine (TBA). A 5 mol % excess of TBA was required to completely neutralize the acid and prevent protonation of the bpy ligand, as well as to avoid side reactions caused by large excess of TBA. The use of activators generated by electron transfer (AGET) ATRP with ascorbic acid as reducing agent resulted in both increased conversion of the AMPSA monomer during polymerization (up to 50% with a 0.8 [ascorbic acid]/[Cu(II)] ratio) and much shorter polymerization times (<30 min). Block copolymers and molecular brushes containing AMPSA side chains were prepared using this method, and the solution and surface behavior of these materials were investigated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5386–5396, 2009  相似文献   

4.
Methyl methacrylate (MMA) were successfully polymerized by atom transfer radical polymerization with activator generated by electron transfer (AGET ATRP) using copper or iron wire as the reducing agent at 90°C. Well‐controlled polymerizations were demonstrated using an oxidatively stable iron(III) chloride hexahydrate (FeCl3·6H2O) as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, and tetrabutylammonium bromide (TBABr) or triphenylphosphine as the ligand. The polymerization rate was fast and affected by the amount of catalyst and type of reducing agents. For example, the polymerization rate of bulk AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0 = 500/1/0.5/1 using iron wire (the conversion reaches up to 82.2% after 80 min) as the reducing agent was faster than that using copper wire (the conversion reaches up to 86.1% after 3 h). At the same time, the experimental Mn values of the obtained poly(methyl methacrylate) were consistent with the corresponding theoretical ones, and the Mw/Mn values were narrow (~1.3), showing the typical features of “living”/controlled radical polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Well‐defined polymer‐nanoparticle hybrids were prepared by a newly reported method: atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) mediated by iron catalyst. The kinetics of the surface‐initiated AGET ATRP of methyl methacrylate from the silica nanoparticles, which was mediated by FeCl3/triphenylphosphine as a catalyst complex, ascorbic acid as a reducing agent, N,N‐dimethylformamide as the solvent in the presence of a “sacrificial” (free) initiator, was studied. Both the free and grafted polymers were grown in a control manner. The chemical composition of the nanocomposites was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermogravimetric analysis was used to estimate the content of the grafted organic compound, and transmission electron micrographs was used to observe the core‐shell structure of the hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2006–2015, 2010  相似文献   

6.
Atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) of acrylonitrile (AN) initiated by ethyl 2‐bromoisobutyrate was approached for the first time using 1,1,4,7,10,10‐hexamethyltriethylenetetramine (HMTETA) and 1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as both ligand and reducing agent. AGET ATRP of AN with HMTETA as both ligand and reducing agent was better controlled than with PMDETA as both ligand and reducing agent under the same experimental conditions. With an increase content of HMTETA, the polymerization provided an accelerated reaction rate and a broader polymer molecular weight distribution. The rate of polymerization with DMF as solvent was faster than with acetonitrile, cyclohexanone, toluene, and xylene as solvents. The polymerization apparent activation energy was calculated to be 45.7 kJ mol?1. The end functionality of polyacrylonitrile (PAN) was confirmed by 1H NMR spectroscopy. The living feature of PAN was verified by chain extensions of PAN with methyl methacrylate and AN. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 128–133, 2010  相似文献   

7.
程振平  朱秀林 《高分子科学》2014,32(8):1010-1018
Atom transfer radical polymerization of styrene(St) and methyl methacrylate(MMA) in bulk and in different solvents using activators generated by electron transfer(AGET ATRP) were investigated in the presence of a limited amount of air using FeCl3·6H2O as the catalyst, ascorbic acid sodium salt(AsAc-Na) as the reducing agent, and a cheap and commercially available tetrabutylammonium bromide(TBABr) as the ligand. It was found that polymerization in THF resulted in shorter induction period than that in bulk and in toluene for AGET ATRP of St, while referring to AGET ATRP of MMA, polymerization in THF showed three advantages compared with that in bulk and toluene: 1) shortening the induction period, 2) enhancing the polymerization rate and 3) having better controllability. The living features of the obtained polymers were verified by chain end analysis and chain-extension experiments.  相似文献   

8.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

9.
Activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) of oligo(ethylene glycol) monomethyl ether methacrylate (OEOMA) was investigated in homogeneous aqueous solution targeting DP = 1000, and in inverse miniemulsion targeting DP = 600, at 30 °C. Several reaction parameters were examined in the preparation of biocompatible, brush‐like, high‐molecular‐weight, water‐soluble polymers. They include concentration of ascorbic acid (AscA), ratio of water to OEOMA, mode of addition of AscA, and ratio of initiator to Cu(II) complex. The results obtained in these studies indicate that AGET ATRP retains all of the benefits of normal ATRP and, additionally, provides a facile route for the preparation of well‐controlled high‐molecular‐weight polymers because of the use of oxidatively stable catalyst precursors. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1771–1781, 2009  相似文献   

10.
A commercially available tris(3,6‐dioxaheptyl)amine (TDA‐1) was used as a novel ligand for activator generated by electron transfer atom transfer radical polymerization (AGET ATRP) of styrene in bulk or solution mediated by iron(III) catalyst in the presence of a limited amount of air. FeCl3 · 6H2O and (1‐bromoethyl)benzene (PEBr) were used as the catalyst and initiator, respectively; and environmentally benign ascorbic acid (VC) was used as the reducing agent. The polymerizations show the features of “living”/controlled free‐radical polymerizations and well‐defined polystyrenes with molecular weight Mn = 2400–36,500 g/mol and narrow polydispersity (Mw/Mn = 1.11–1.29) were obtained. The “living” feature of the obtained polymer was further confirmed by a chain‐extension experiment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2002–2008, 2009  相似文献   

11.
Atom transfer radical polymerization using activators regenerated by electron transfer (ARGET ATRP) of acrylonitrile (AN) was first approached with 1‐(1‐ethoxycarbonylethyl)‐3‐methylimidazolium tetrafluoroborate ([ecemim][BF4]) as reaction medium and tin(II) bis(2‐ethylhexanoate) (Sn(EH)2) as reducing agent in the presence of air. When compared with in bulk, an obvious increase of polymer isotacticity was observed for ARGET ATRP of AN in 1‐(1‐ethoxycarbonylethyl)‐3‐methylimidazolium hexafluorophospate ([ecemim][PF6]), the reaction rate of ARGET ATRP of AN in [ecemim][PF6] was higher and the polymerization process was better controlled. The block copolymer polyacrylonitrile‐block‐poly(methyl methacrylate) with molecular weight at 69,750, distribution at 1.34, and isotacticity at 0.36 was successfully obtained in [ecemim][PF6]. [Ecemim][PF6] and the catalyst system were recycled and reused and had no effect on the living nature of polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The catalytic amount of inorganic bases (i.e., NaOH, Na3PO4, NaHCO3, and Na2CO3) and organic bases such as pyridine and triethylamine was used as the additives in an iron‐mediated atom transfer radical polymerization with activators generated by electron transfer (AGET ATRP) of a polar monomer methyl methacrylate (MMA) using FeCl3·6H2O as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, ascorbic acid (AsAc) as the reducing agent, and tetrabutylammonium bromide (TBABr) as the ligand. All these bases can result in dual enhancement of polymerization rate and controllability over molecular weight while keeping low Mw/Mn values (<1.3) for the resultant polymers. For example, the polymerization rate of AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0/[AsAc]0/[NaOH]0 = 500/1/1/2/2/1.5 using NaOH as the additives was more than two times of that without NaOH. The nature of “living”/controlled free radical polymerization in the presence of base was confirmed by chain‐extension experiments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
原子转移自由基细乳液聚合*   总被引:2,自引:0,他引:2  
本文从正向、反向、同时正向/反向、电子转移活化剂等不同原子转移自由基聚合(ATRP)细乳液引发体系的角度,综述了近年来国内外关于ATRP细乳液聚合的研究进展。在细乳液体系中进行正向ATRP,聚合可控性不理想,反向ATRP相对适合于细乳液体系,其缺点是表面活性剂用量较大。同时正向/反向引发体系的ATRP中催化剂用量大为减少,并且聚合具有良好的可控性;电子转移活化剂(AGET)ATRP是通过电子转移反应来还原过渡金属的氧化态,克服了同时正向/反向ATRP中需要引入自由基引发剂的缺点。  相似文献   

14.
Atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) of acrylonitrile (AN) initiated by ethyl 2-bromoisobutyrate (EBiB) was approached for the first time in the absence of oxygen and in the presence of air, using a novel catalyst system based on SmBr3·6H2O/isophthalic acid complexes and using ascorbic acid (VC) as a reducing agent. Both the polymerization in the absence of oxygen and in the presence of air proceeded in a well-controlled manner as evidenced by kinetic studies. Compared with the polymerization in the absence of oxygen, the polymerization in the presence of air provided rather slow reaction rate and showed better control of molecular weight and its distribution under the same experimental conditions. The polymerization apparent activation energies in the absence of oxygen and in the presence of air were calculated to be 47.1 and 51.3 kJ·mol?1, respectively. A slow polymerization rate and a broad polydispersity index were observed using anisole and toluene instead of DMF as solvent. Polyacrylonitrile obtained was successfully used as a macroinitiator to proceed the chain extension polymerization of styrene via AGET ATRP in the presence of air.  相似文献   

15.
Atom transfer radical polymerization (ATRP) using activators generated by electron transfer (AGET) was investigated for the controlled polymerization of 2‐hydroxyethyl methacrylate (HEMA) in a protic solvent, a 3/2 (v/v) mixture of methyl ethyl ketone and methanol. The AGET process enabled ATRP to be started with an air‐stable Cu(II) complex that was reduced in situ by tin(II) 2‐ethylhexanoate. The reaction temperature, Cu catalysts with different ligands, and variation of the initial concentration ratio of HEMA to the initiator were examined for the synthesis of well‐controlled poly(2‐hydroxyethyl methacrylate) and a poly(methyl methacrylate)‐b‐poly(2‐hydroxyethyl methacrylate) block copolymer. The level of control in AGET ATRP was similar to that in normal ATRP in protic solvents, and this resulted in a linear increase in the molecular weight with the conversion and a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight < 1.3). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3787–3796, 2006  相似文献   

16.
In this study, photoirradiated Fe-mediated AGET (activators generated by electron transfer) atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was investigated at ambient temperature in N,N-dimethylformamide (DMF) using carbon tetrachloride as initiator, FeCl3·6H2O/bipyridine (Bpy) as catalyst complex, and alcohol as reducing agent. Linear semi-logarithmic plot of conversion vs. time was obtained from the kinetic experiments, and the number-average molecular weight increased linearly with monomer conversion and corresponded to the theoretic values with molecular weight distributions (Mw/Mn) as low as 1.25, which agreed with the character of controlled/living polymerization. The kinds of alcohol played an important role in photoirradiated Fe-mediated AGET ATRP of MMA. The living characteristics were demonstrated through chain extension experiment. The obtained polymer was characterized by proton nuclear magnetic resonance (NMR) and gel permeation chromatography.  相似文献   

17.
A new green solvent, cyclopentyl methyl ether (CPME), is used for the first time in solvent mixtures for the successful supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of both activated and non‐activated monomers. The SARA ATRP of methyl acrylate (MA), glycidyl methacrylate (GMA), styrene (Sty), and vinyl chloride (VC) in CPME‐based mixtures is studied and presents similar features to those reported in the literature using other SARA ATRP systems. Moreover, CPME‐based mixtures are suitable solvents for the controlled SARA ATRP of MA using different SARA agents, such as Fe(0), Cu(0), or Na2S2O4. The chemical structure and the retention of the chain‐end functionality of the polymers are confirmed by 1H NMR and MALDI‐TOF analyses and the preparation of a well‐defined PMA‐b‐PVC‐b‐PMA triblock copolymer. The method reported here presents an additional improvement in the search for new ecofriendly ATRP systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2722–2729  相似文献   

18.
Atom transfer radical polymerization with activators generated by electron transfer initiating/catalytic system (AGET ATRP) of 2‐hydroxyethyl methacrylate (HEMA) was carried out in inverse miniemulsion. Water‐soluble ascorbic acid as a reducing agent and mono‐ and difunctional poly(ethylene oxide)‐based bromoisobutyrate (PEO‐Br) as a macroinitiator were used in the presence of CuBr2/tris[(2‐pyridyl)methyl]amine (TPMA) and CuCl2/TPMA complexes. The use of poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) as a polymer surfactant resulted in the formation of stable HEMA cyclohexane inverse dispersion and PHEMA colloidal particles. All polymerizations were well‐controlled, allowing for the preparation of well‐defined PEO‐PHEMA and PHEMA‐PEO‐PHEMA block copolymers with relatively high molecular weight (DP > 200) and narrow molecular weight distribution (Mw/Mn < 1.3). These block copolymers self‐assembled to form micellar nanoparticles being 10–20 nm in diameter with uniform size distribution, and aggregation number of ~10 confirmed by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4764–4772, 2007  相似文献   

19.
Cu(0)‐mediated living radical polymerization was first extended to acrylonitrile (AN) to synthesize polyacrylonitrile with a high molecular weight and a low polydispersity index. This was achieved by using Cu(0)/hexamethylated tris(2‐aminoethyl)amine (Me6‐TREN) as the catalyst, 2‐bromopropionitrile as the initiator, and dimethyl sulfoxide (DMSO) as the solvent. The reaction was performed under mild reaction conditions at ambient temperature and thus biradical termination reaction was low. The rapid and extensive disproportionation of Cu(I)Br/Me6‐TREN in DMSO/AN supports a mechanism consistent with a single electron transfer‐living radical polymerization (SET‐LRP) rather than activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). 1H NMR analysis and chain extension experiment confirm the high chain‐end functionality of the resultant polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Tripodal imidazole containing ligands, bis((2‐pyridyl)methyl)(1‐methylimidazole‐2‐yl)methyl)amine (BPIA) and bis(1‐methylimidazole‐2‐yl)methyl)((2‐pyridyl)methyl)amine (BIPA), were synthesized and used for copper catalyzed atom transfer radical polymerization (ATRP) of n‐butyl acrylate (nBA). The molecular weights of poly(n‐butyl acrylate) (PnBA) catalyzed by CuBr/BPIA and CuBr/BIPA complexes increased linearly with nBA conversions and they were close to theoretical values with low polydispersities. ATRP equilibrium rate constant (KATRP) measurements showed that bothCuBr/BPIA and CuBr/BIPA complexes had high KATRP values, similar to that of CuBr/tri(2‐pyridylmethyl)amine (TPMA), which is one of the ATRP most active ligands. Activators regenerated by electron transfer (ARGET) ATRP of nBA with CuBr2/BPIA and CuBr2/BIPA complexes were also conducted and polymerization reached high nBA conversions, resulting in PnBA with low polydispersities. This suggests that the copper complexes with BPIA and BIPA were sufficiently stable and active to conduct ATRP when catalyst concentration was low. ARGET ATRP to form high molecular weight PnBA with CuBr2/BPIA and CuBr2/BIPA complexes was also successful. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2015–2024, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号