首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3, NO3, NO2, O3 and O2 of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.  相似文献   

2.
Knowledge of the transport coefficients of steam water plasma is important for modeling plasma flow processes and heat transfer. In this study, calculations of these properties were performed in a temperature range from 400 to 30,000 K and at pressures of 0.5, 1.0, 5.0 and 10 bar. Herein the composition of water plasma was determined at equilibrium. First, the most recent data on potential interactions and elastic differential cross sections for interacting particles were carefully examined in order to choose those most appropriate for determining the collision integrals. Second, we restricted the number of species to ten (e, H, O, H+, O+, O++, H2, O2, OH and H2O) and tested our collision integrals by comparing the thermal conductivity and viscosity to experimental data for water (at low temperatures). Finally, the total thermal conductivity, viscosity and electrical conductivity were calculated for different pressures.  相似文献   

3.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
《Electroanalysis》2017,29(6):1602-1611
Electrodes composed of carbon fibers were modified with graphene nano‐sheets in order to increase their surface area and facilitate electrochemical reactions. Electrocatalytic species, such as Meldola's blue (MB) and hemin were immobilized on the graphene surface due to their π‐π stacking and then used for electrocatalytic oxidation of NADH and reduction of H2O2, respectively. Further modification of these electrodes with enzymes producing NADH and H2O2 in situ (lactate dehydrogenase, LDH, and lactate oxidase, LOx, respectively), allowed assembling of a biofuel cell operating in the presence of lactate, oxygen and NAD+. The cathode of the biofuel cell required lactate and O2 for its operation, while the anode operated in the presence of lactate and NAD+. Notably, both bioelectrocatalytic electrodes operated in the presence of lactate, one producing H2O2 in the reaction catalyzed by LOx in the presence of O2, second producing NADH in the reaction catalyzed by LDH in the presence of NAD+. Both reactions were performed in the biofuel cell without separation of the cathodic and anodic solutions and with no need of a membrane. The biofuel cell was tested in solutions mimicking human sweat and then in real human sweat samples, demonstrating substantial power release being able to activate electronic devices.  相似文献   

5.
The IR spectrum of Si3H8+ ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold Si3H8+–Ar complexes. Vibrational analysis of the spectrum is consistent with a Si3H8+ structure ( 2+ ) obtained by a barrierless addition reaction of SiH4 to the disilene ion (H2Si?SiH2+) in the silane plasma. In this structure, one of the electronegative H atoms of SiH4 donates electron density into the partially filled electrophilic π orbital of the disilene cation. The resulting asymmetric Si? H? Si bridge of the 2+ isomer with a bond energy of approximately 60 kJ mol?1 is characteristic for a weak three‐center two‐electron bond, which is identified by its strongly IR active asymmetric Si? H? Si stretching fundamental at about 1765 cm?1. The observed 2+ isomer is calculated to be only a few kJ mol?1 less stable than the global minimum structure of Si3H8+ ( 1+ ), which is derived from vertical ionization of trisilane. Although more stable, 1+ is not detected in the measured IR spectrum of Si3H8+–Ar, and its lower abundance in the supersonic plasma is rationalized by the production mechanism of Si3H8+ in the silane plasma, in which a high barrier between 2+ and 1+ prevents the efficient formation of 1+ . The potential energy surface of Si3H8+ is characterized in some detail by quantum chemical calculations. The structural, vibrational, electronic and energetic properties as well as the chemical bonding mechanism are investigated for a variety of low‐energy Si3H8+ isomers and their fragments. The weak intermolecular bonds of the Ar ligands in the Si3H8+–Ar isomers arise from dispersion and induction forces and induce only a minor perturbation of the bare Si3H8+ ions. Comparison with the potential energy surface of C3H8+ reveals the differences between the silicon and carbon species.  相似文献   

6.
Low voltage, low energy submerged pulsed arcs between a pair of carbon or iron electrodes with a pulse repetition rate of 100?Hz, energies of 2.6?C192?mJ and durations of 20, 50 and 100???s were used to remove methylene blue (MB) contamination from 30?ml aqueous solutions. The MB concentration decreased exponentially with rates of 0.0006?C0.0143?s?1 during processing with the carbon electrode pair. With the iron electrodes, the MB concentration initially decreased faster (0.030?s?1) than with the carbon electrodes, but later saturated. However when microparticles produced with the iron electrodes were periodically filtered, the high removal rate was maintained. Under these conditions, the volume of water which can be treated per unit energy expenditure was much higher with the submerged arc than with other plasma processes. A kinetic model based on MB degradation by OH· radicals formed by the discharge was formulated. The higher initial MB removal rate with iron electrodes is explained by additional OH· production from Fenton??s reaction between Fe++ and H2O2 produced by the discharge. This rate is maintained if the eroded iron particles are filtered, but if eroded iron particles accumulate, degradation slows down and stops, possibly because the iron particles catalytically decompose H2O2 and hence stops Fenton??s reaction, and either directly or via increased Fe++ dissolved from the particles, scavenge the OH· radicals.  相似文献   

7.
There are many problems with flue gas desulfurization by traditional gas ionization discharge, including the large size of the plasma source, high energy consumption, and the need for a traditional desulfurization method. This paper introduces oxidization of SO2 to sulfuric acid (H2SO4) in a duct by reactive oxygen species (O2 +, O3) produced by strong ionization dielectric barrier discharge. The entire plasma reaction process is completed within the duct without the use of absorbents, catalysts, or large plasma source. The reactive oxygen species O2 + reacts with gaseous H2O in the flue gas to generate ·OH radicals, which can oxidize trace amounts of SO2 in large volumes of the flue gas to produce H2SO4. Sulfuric acid is also produced by O3 oxidation of SO2 to SO3, and SO3 reacting with gaseous H2O in the flue gas. Experimental results showed that with a gas temperature of 22 °C and reactive oxygen species injection rate of 0.84 mg/L, the SO2 removal rate was 81.4 %, and the SO4 2? concentration in the recovered liquid H2SO4 reached 53.8 g/L.  相似文献   

8.
Foest  R.  Basner  R.  Schmidt  M. 《Plasmas and Polymers》1999,4(4):259-268
A technique is described, which supports the plasma mass spectrometry to distinguish possible sources of ion peaks found in the mass spectrum of the neutral gas. The proposed method is based on the measurement of the kinetic energy which the fragment ions gain during dissociative ionization by electron impact inside the ion source of the spectrometer. This approach is of special interest for applications in plasma processes such as plasma assisted deposition or etching techniques where complicated molecules are involved. The principle of the method is demonstrated and discussed for the examination of various fragment ions as CH3 +, C2H2 +, C2H3 +, C2H5 + and CH3O+ in the neutral gas spectrum of an 13.56 MHz rf discharge in an Argon-Tetraethoxysilane (TEOS) mixture.  相似文献   

9.
Ion insertions always involve electrode-electrolyte interface process, desolvation for instance, which determines the electrochemical kinetics. However, it′s still a challenge to achieve fast ion insertion and investigate ion transformation at interface. Herein, the interface deprotonation of NH4+ and the introduced dissociation of H2O molecules to provide sufficient H3O+ to insert into materials′ structure for fast energy storages are revealed. Lewis acidic ion-NH4+ can, on one hand provide H3O+ itself via deprotonation, and on the other hand hydrolyze with H2O molecules to produce H3O+. In situ attenuated total reflection-Fourier transform infrared ray method probed the interface accumulation and deprotonation of NH4+, and density functional theory calculations manifested that NH4+ tend to thermodynamically adsorb on the surface of monoclinic VO2, and deprotonate to provide H3O+. In addition, the inserted NH4+ has a positive effect for stabilizing the VO2(B) structure. Therefore, high specific capacity (>300 mAh g−1) and fast ionic insertion/extraction (<20 s) can be realized in VO2(B) anode. This interface derivation proposes a new path for designing proton ion insertion/extraction in mild electrolyte.  相似文献   

10.
Supramolecular surface nanostructures have application potential as functional devices. The complex combination of thiolated cyclodextrin, chemisorbed on an Au surface (Au‐S‐CD), with deposited Fe species is studied by secondary ion mass spectrometry. The Fe species are prepared by pulsed laser ablation in water and thermal effusion in vacuum. Using laser ablation in water, the solution of Fe species is dropped on Au‐S‐CD, where mass peaks at 1227 m/z, 1243 m/z, and 1260 m/z are observed and assigned to C42H68O34SNa‐Fe+, C42H68O34SK‐Fe+ together with C42H68O34SNa‐FeO+, and C42H68O34SK‐FeO+, respectively. On the other hand, laser ablation directly linked to the Au‐S‐CD surface results in desorption of CD‐S. Thermal effusion, even with a cooled surface, was negative with respect to the complex observation. Laser ablation results in the formation of a supramolecular host–guest complex of the form Au‐S‐CD‐Fe, and in the formation of an adduct of the form Au‐S‐CD‐FeO.  相似文献   

11.
We have measured the synchrotron‐induced photofragmentation of isolated 2‐deoxy‐D ‐ribose molecules (C5H10O4) at four photon energies, namely, 23.0, 15.7, 14.6, and 13.8 eV. At all photon energies above the molecule′s ionization threshold we observe the formation of a large variety of molecular cation fragments, including CH3+, OH+, H3O+, C2H3+, C2H4+, CHxO+ (x=1,2,3), C2HxO+ (x=1–5), C3HxO+ (x=3–5), C2H4O2+, C3HxO2+ (x=1,2,4–6), C4H5O2+, C4HxO3+ (x=6,7), C5H7O3+, and C5H8O3+. The formation of these fragments shows a strong propensity of the DNA sugar to dissociate upon absorption of vacuum ultraviolet photons. The yields of particular fragments at various excitation photon energies in the range between 10 and 28 eV are also measured and their appearance thresholds determined. At all photon energies, the most intense relative yield is recorded for the m/q=57 fragment (C3H5O+), whereas a general intensity decrease is observed for all other fragments— relative to the m/q=57 fragment—with decreasing excitation energy. Thus, bond cleavage depends on the photon energy deposited in the molecule. All fragments up to m/q=75 are observed at all photon energies above their respective threshold values. Most notably, several fragmentation products, for example, CH3+, H3O+, C2H4+, CH3O+, and C2H5O+, involve significant bond rearrangements and nuclear motion during the dissociation time. Multibond fragmentation of the sugar moiety in the sugar–phosphate backbone of DNA results in complex strand lesions and, most likely, in subsequent reactions of the neutral or charged fragments with the surrounding DNA molecules.  相似文献   

12.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

13.
This paper presents a study of Sb2O3 subjected to oxygen plasma and to ion beam bombardment (Ar+ and O2+ ions of 4 keV) by x‐ray photoelectron and reflected electron energy‐loss spectroscopies. Changes in stoichiometry (i.e O/Sb ratio) and oxidation state of Sb have been detected and correlated with the chemical and ballistic effects of the beams used for alteration of the Sb2O3 surface. Thus, oxygen plasma treatments lead to a significant oxidation of the surface layers of this material with the formation of up to 51% Sb5+ species as found by Sb 4d curve‐fitting analysis. By contrast, O2+ ion bombardment only produces a mild oxidation of the target with the formation of ~13% Sb5+ species. Argon ion bombardment induces a complex process where Sb5+ and Sb0 species are formed simultaneously. This result has been discussed in terms of a disproportionation reaction of the type Sb3+ → Sb5+ + Sb0. The changes in the electronic properties of the treated material are consistent with the loss upon oxidation to Sb5+ of the valence states associated to the 5s2 electron pair of antimony. Approximate shapes of valence bands for Sb2O3 and Sb2O5 pure compounds have been extracted by applying factor analysis to valence band spectra of Sb2O3 subjected to different ion and plasma treatments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long‐term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li‐stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchanged even under a high exchange rate of 63.6 %. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. These observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.  相似文献   

15.
The removal of organic contaminants from porous Al2TiO5 during treatment in oxygen plasma was studied by optical emission spectroscopy (OES). The samples of Al2TiO5 were immersed into water emulsion of mineral oil for 3 h to get soaked. Then, they were thoroughly cleaned in ultrasound to remove oil from the surface. Samples were later exposed to RF oxygen plasma at the pressure of 75 Pa. The plasma density was about 2 × 1016 m−3, the electron temperature was about 6 eV and the density of neutral oxygen atoms was about 2 × 1021 m−3. Optical emission spectra between 200 and 1,000 nm were measured continuously during plasma treatment. The CO peak resulting from oil oxidation reached a well-pronounced maximum between 100 and 150 s of plasma treatment. The maximum in CO corresponded well with a minimum in O peaks. Concentration of oil in the samples was estimated by energy dispersion X-ray analysis. Initially the samples showed high concentration of carbon (about 38 at.%), while after plasma treatment the carbon concentration decreased below the detection limit. The cleaning efficiency was explained by diffusion of oil towards the surface where it was removed by oxidation with oxygen radicals.  相似文献   

16.
The viability of making [Fe(CB6)L] (L = H2, N2, O2, nitric oxide [NO?, NO, and NO+], CO2, and hydrocarbons [CH4, C2H6, C2H4, and C6H6]) has been investigated by density functional theory (DFT) calculations. The complexes 2 – 18 are thermodynamically stable and may be synthesized. The small molecules are activated to some extent after complexation. Molecular orbital and ΔG calculation revealed that the molecular hydrogen and hydrocarbons can be chemically adsorbed and desorbed on [Fe(CB6)] without any significant chemical modification and therefore [Fe(CB6)] may serve as a storage material. The N2, O2, and nitric oxide (NO?, NO, and NO+) can be activated using [Fe(CB6)]. Proton, carbon, boron, and nitrogen NMR chemical shift calculation predicts drastic chemical shift difference before and after the complexation of [Fe(CB6)] with small molecules. This new findings suggest that the CB62? ligand‐based complex may provide several applications in the future. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The physicochemical properties of anode material are important for the electron transfer of anode bacteria and electricity generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was pretreated with isopropanol, hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) in order to reduce the anode functional groups. The influence of functional groups on the electrochemical properties of carbon cloth anode and power generation of MFCs was investigated. The anode pretreatments removed the surface sizing layer of carbon cloth and substantially reduced the contents of C‐O and pyridinic/pyrrolic N groups on the anode. Electrochemical impedance spectroscopy and cyclic voltammetry analyses of the biofilm‐matured anodes revealed an enhanced electrochemical electron transfer property because of the anode pretreatments. As compared with the untreated control (612 ± 6 mW m?2), the maximum power density of an acetate‐fed single‐chamber MFC was increased by 26% (773 ± 5 mW m?2) with the isopropanol treated anode. Additional treatment with H2O2 and NaOCl further increased the maximum power output to 844 ± 5 mW m?2 and 831 ± 4 mWm?2. A nearly inverse liner relationship was observed between the contents of C‐O and pyridinic/pyrrolic N groups on anodes and the anodic exchange current density and the power output of MFCs, indicating an adverse effect of these functional groups on the electricity production of anodes. Results from this study will further our understanding on the microbial interaction with carbon‐based electrodes and provide an important guidance for the modification of anode materials for MFCs in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, aluminium (Alclad 2024‐T3) substrates were cleaned by an r.f. (13.56 MHz) plasma, using argon (Ar), oxygen (O2) and a mixture of O2/Ar (50:50) gases. The effectiveness of plasma cleaning was checked in situ using X‐ray photoelectron spectroscopy (XPS) and ex situ using water contact angle measurements. XPS O/Al surface atomic ratios are in excellent agreement with those of the crystalline boehmite and the pseudoboehmite. Oxygen O 1s peak‐fitting was used to quantify the proportion of hydroxyl ions and the functional composition on the aluminium surface: the surface cleaned with O2 plasma contains 50% of aluminium hydroxides, the ones cleaned with Ar plasma and with Ar/O2 plasma contain, respectively, 25 and 37% hydroxyl ions. The binding energy separation between Al 2p and O 1s is characteristic of AlO(OH). Thin SiOx films were subsequently deposited from a mixture of hexamethyldisiloxane (HMDSO) and oxygen. In the absence of oxygen, a hydrophobic (Θ≥ 100° ) film characteristic of polydimethylsiloxane (PDMS) is formed: polysiloxane‐like thinner films (SiOx) are obtained with the introduction of oxygen. XPS and contact angle measurements confirmed both the composition and the structure of these films. More importantly, contact angle measurements using different liquids and interpreted with the van Oss‐Good‐Chaudhury theory allowed determination of the surface free energy of the deposited films: the calculated values of surface tension of the film formed from HMDSO/O2: (50/50) are in excellent agreement with those of reference silica‐based materials such as a silicon wafer and cleaned glass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The chemical and physical structure of ion-implanted silicone rubbers has been studied in order to analyze their blood compatibility such as reduction of platelet accumulation owing to ion implantation. H+2, He+, C+, O+, O+2, N+, N+2, Ne+, Na+, Ar+, K+, and Kr+ ion implantations were performed at an energy of 150 keV with fluences between 1 × 1017 and 3 × 1017 ions/cm2 at room temperature. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, >C = O, SiH, and CH2. The formation of these radicals depended on the ion species employed: >C = O formation by O+ or O+2 implantation and formation of amines by N+ or N+2 implantation. The results of Raman spectroscopy showed that ion implantation always produced a peak at near 1500 cm−1, although the intensity of this peak was dependent on the ion species. The light ions like H+2 and He+ were more effective than heavy ions in producing this peak, and O+2 implantation was the most effective on producing amorphous carbon. These results indicated that >C = O and amorphous carbon, generated by O+2 implantation, may improve the antithrombogenicity. The antithrombogenicity was tested by the superior vena cava (SVC) indwelling method for two days in rats with in-111-tropolone-platelets, and by the inferior vena cava (IVC) indwelling method for periods of 1–4 weeks in dogs. Results of the SVC indwelling method showed that platelet accumulation on H+2 and O+2 implanted specimens decreased. In particular 1 × 1017 O+2/cm2 implantation caused both accumulation onto specimens and the SVC to decrease. Macroscopic views of the ion-implanted IVC specimens in dogs revealed little thrombus formation. It is concluded that ion implantation into silicone rod is a useful technique to improve its antithrombogenicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号