首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A DFT study of ethylene polymerization by zirconocene catalysts was carried out. Stationary points corresponding to intermediates and transition states were located on the potential energy surface of the [Cp2ZrC2H5]++C2H4 model system. Three possible reaction mechanisms involving the formation of β-agostic complexes were considered. The energy and thermodynamic characteristics for different reaction pathways were calculated. Corresponding activation energies lie in the range 3.9–6.8 kcal mol−1. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1168–1177, July, 2000.  相似文献   

3.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

4.
A novel complex dichlorobis(2‐ethyl‐3‐hydroxy‐4‐pyrone)zirconium(IV) (ZrCl2(ethylpyrone)2) was synthesized. Complexation of the pyrone ligand to the zirconium was confirmed by UV, 1H and 13C‐NMR, and electrochemical studies. NMR showed the presence of four isomers and density functional theory calculations indicated that the main isomer had a cis configuration. The catalyst was shown to be active in ethylene polymerization in the presence of the cocatalyst methylaluminoxane. The highest catalyst activity for the zirconium complex was achieved at Al/Zr = 2500, 70 °C and when a small concentration of catalyst was used (1 μmol). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3830–3841, 2008  相似文献   

5.
A series of 2‐aminopyridine Ni(II) complexes bearing different substituent groups {(2‐PyCH2NAr)NiBr, Ar = 2,4,6‐trimethylphenyl ( 3a) , 2,6‐dichlorophenyl ( 3b ), 2,6‐dimethylphenyl ( 3c) , 2,6‐diisopropylphenyl ( 3d ), 2,6‐difluorophenyl ( 3e ); (2‐PyCH2NHAr)2NiBr2, Ar = 2,6‐diisopropylphenyl ( 4a )} have been synthesized and investigated as precatalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). High molecular weight branched polymers as well as short‐chain oligomers were simultaneously produced with these complexes. Enhancing the steric bulk of the ortho‐aryl‐substituents of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. With ortho‐haloid‐substitution, the catalysts afforded a product with low polymer/oligomer ratio ( 3b ) and even only oligomers ( 3e ) in which C14H28 had the maximum content. Compared with complex 3d containing ionic ligand, complex 4a containing neutral ligand exhibited obviously low catalytic activity for ethylene polymerization. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C NMR spectrogram. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1618–1628, 2008  相似文献   

6.
The use of a polyethylene-based copolymer with dual functional groups (polyethylene-gr-2-tert-butyl amino ethyl methacrylate) as the support for TiCl4 catalyst in ethylene polymerization was studied. Different methods for treating the support were examined and treatment with BuMgCl was found to be the most effective. With the BuMgCl-modified support, a 12-run Plackett-Burman design was used to screen 11 factors in catalyst preparation. Statistical analysis of the results from this design identified significant factors with the amount of BuMgCl singled out to be the most important one for the four response variables of interest, Mg loading, Ti loading, catalyst activity per gram catalyst, and catalyst activity per gram Ti. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
运用密度泛函理论系统地研究了已知的磷化镍晶体如Ni3P、 Ni12P5、 Ni2P、 Ni5P4、 NiP、 NiP2 和 NiP3等的结构、成键以及相关的热力学稳定性,对于结构简易化合物(Ni2P和NiP3)的弹性行为进行了预测。这些数据有助于更好的理解磷化镍的催化活性。  相似文献   

8.
The kinetics of ethylene polymerization using homogeneous Cp2ZrCl2/aluminoxane catalysts in toluene has been investigated at 70 °C with an ethylene pressure of 30 psi. Four aluminoxanes were used: methylaluminoxane, modified methylaluminoxanes with a fraction of methyl groups substituted with isobutyl (MMAO‐4) or octyl (MMAO‐12) groups, and polymethylaluminoxane (PMAO‐IP). The cocatalyst‐to‐catalyst ratio, [Al]/[Zr], varied from 1000 to 10,000. The experimental results obtained using the four cocatalysts were compared and a model was proposed to fit the rate of polymerization as a function of polymerization time and [Al]/[Zr] ratio. Molecular weight distributions with polydispersities between three and four indicate the presence of more than one active site type. We proposed a model that explained these broad molecular weight distributions using an unstable active complex that is formed in the early stages of the reaction and is transformed over time to a more stable active complex via an intermediate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1677–1690, 2007  相似文献   

9.
The cyclohexyl‐substituted salicylaldiminato–Ni(II) complex [O? (3‐C6H11)(5‐CH3)C6H2CH?N‐2,6‐C6H3iPr2]Ni(PPh3)(Ph) ( 4 ) has been synthesized and characterized with 1H NMR and X‐ray structure analysis. In the presence of phosphine scavengers such as bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD)2], triisobutylaluminum (TIBA), and triethylaluminum (TEA), 4 is an active catalyst for ethylene polymerization and copolymerization with the polar monomers tert‐butyl‐10‐undecenoate, methyl‐10‐undecenoate, and 4‐penten‐1‐ol under mild conditions. The polymerization parameters affecting the catalytic activity and viscosity‐average molecular weight of polyethylene, such as the temperature, time, ethylene pressure, and catalyst concentration, are discussed. A polymerization activity of 3.62 × 105 g of PE (mol of Ni h)?1 and a weight‐average molecular weight of polyethylene of 5.73 × 104 g.mol?1 have been found for 10 μmol of 4 and a Ni(COD)2/ 4 ratio of 3 in a 30‐mL toluene solution at 45 °C and 12 × 105 Pa of ethylene for 20 min. The polydispersity index of the resulting polyethylene is about 2.04. After the addition of tetrahydrofuran and Et2O to the reaction system, 4 exhibits still high activity for ethylene polymerization. Methyl‐10‐undecenoate (0.65 mol %), 0.74 mol % tert‐butyl‐10‐undecenoate, and 0.98 mol % 4‐penten‐1‐ol have been incorporated into the polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6071–6080, 2004  相似文献   

10.
The catalyst (N,N‐bis(2,6‐dibenzhydryl‐4‐ethoxyphenyl)butane‐2,3‐diimine)nickel dibromide, a late transition metal catalyst, was prepared and used in ethylene polymerization. The effects of reaction parameters such as polymerization temperature, co‐catalyst to catalyst molar ratio and monomer pressure on the polymerization were investigated. The α‐diimine nickel‐based catalyst was demonstrated to be thermally robust at a temperature as high as 90 °C. The highest activity of the catalyst (494 kg polyethylene (mol cat)?1 h?1) was obtained at [Al]/[Ni] = 600:1, temperature of 90 °C and pressure of 5 bar. In addition, the performance of a binary catalyst using nickel‐ and palladium‐based complexes was compared with that of the corresponding individual catalytic systems in ethylene polymerization. In a study of the catalyst systems, the average molecular weight and molecular weight distribution for the binary polymerization were between those for the individual catalytic polymerizations; however, the binary catalyst activity was lower than that of the two individual ones. The obtained polyethylenes had high molecular weights in the region of 105 g mol?1. Gel permeation chromatography analysis showed a narrow molecular weight distribution of 1.44 for the nickel‐based catalyst and 1.61 for the binary catalyst system. The branching density of the polyethylenes generated using the binary catalytic system (30 branches/1000 C) was lower than that generated using the nickel‐based catalyst (51/1000 C). X‐ray diffraction study of the polymer chains showed higher crystallinity with lower branching of the polymer obtained. Also Fourier transform infrared spectra confirmed that all obtained polymers were low‐density polyethylene.  相似文献   

11.
Two neutral salicylaldiminato methyl pyridine nickel(II) complexes were synthesized and evaluated for ethylene polymerization. Each catalyst bears a methoxy group in the 3‐position and a halogen atom in the 5‐position of the salicyl ligand, chlorine in case of catalyst 3a and bromine in 3b . Molecular structures of the catalysts were obtained by X‐ray crystallography. The resulting polymerization activities, for example, indicated by a maximum turnover frequency of 4,870 mol ethylene/(mol Ni × h) for 1‐h runs obtained with 3a , were higher than those of similar catalysts at comparable conditions reported in the literature. Catalyst 3a was slightly more active than catalyst 3b . The polymers are branched as measured by 1H NMR and 13C NMR. This was also reflected in the melting temperatures between 76 and 113 °C obtained by differential scanning calorimetry. By using gel permeation chromatography measurements, it was determined that the Mw of the polymers ranges between about 5,400 and 21,600 g/mol. In particular, the effect of the polymerization temperature on the catalyst activity, degree of branching, and molecular weight properties has been described. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
It is possible to synthesize poly(N-substituted maleimide) by using a chiral complex consisting of a zinc and N-diphenylmethyl-1-benzyl-2-pyrrolidinoethanamine (DPhBP). The optical specific rotations [α]43525 in obtained polymers depend on the chirality of ligands in the catalysts. In the present study, density functional theory (DFT) calculations were adopted to investigate the polymerization mechanism in detail. The bulky diphenylmethyl group in the chiral ligand is effective to enhance the formation of the product in the initiation reaction. The geometry related to the pyrrolidine ring of the chiral ligand in the Zn catalyst is responsible for determining the configuration of polymers. It was also confirmed that the bulky substituent on the N atom of the N-substituted maleimide is another factor for obtaining polymers with high [α]43525.  相似文献   

13.
Density functional theory calculations predict a new lower energy route for the formation of the desired interligand addition product from the reaction between ethylene and nickel bis(dithiolene). The new route involves the initial binding of ethylene along the nickel–sulfur bond. The barrier heights for adding ethylene along this bond for the neutral and anionic nickel complexes are compared to each other as well as to a previously published previous mechanism. Selected structural parameters of the studied species have been analyzed to highlight the structural change on specific reactions. It was found that the ethylene/nickel bis‐dithiolene reaction occurs preferably via the nickel–sulfur bond of the neutral species, forming a complex which then rearranges to a desired interligand adduct via a low barrier. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
比较了正辛醇-三氟化硼乙醚络合物(n-C8H17OH─B)预混和稀三氟、化硼乙醚络合物(B)单加两种体系的丁二烯聚合中微量水的作用规律,测定了这些体系的动力学参数。研究发理,水加在丁二烯中比直接加在溶剂油中好;二种聚合体系都存在含水量的临界值范围,H2O与三异丁基铝的摩尔比约在0.3~2.3之间,在此范围内调节含水量.体系较稳定:丁二烯中有水时,稀B单加比陈化液和B组分同时加入体系中,前者聚合速度较快。  相似文献   

15.
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler–Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3313–3319, 2003  相似文献   

16.
The use of crosslinked poly(styrene‐co‐4‐vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4‐vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C N in the pyridine ring, and a new absorption band appeared at about 730 cm−1 indicating a stable bond Al N formed in the polymer‐supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer‐supported zirconocene was discussed as well. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37–46, 1999  相似文献   

17.
18.
The reaction of ditoluenetitanium(0) with oxygen affords an intermediate oxidation product: a titanium(II) complex that catalyzes ethylene polymerization. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2043–2045, October, 2007.  相似文献   

19.
Novel Ni(II) complexes of 2‐(1H–benzimidazol‐2‐yl)‐phenol derivatives (HLx: x  =  1–5; C1–C5 ) have been synthesized and characterized. In the mononuclear complexes, the ligands were coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were confirmed on the basis of FT‐IR, UV–Vis, 1H‐, 13C–NMR, inductively coupled plasma and elemental analyses (C, H and N). The purity of these compounds was ascertained by melting point (m.p.) and thin‐layer chromatography. The geometry optimization and vibrational frequency calculations of the compounds were performed using Gaussian 09 program with B3LYP/TZVP level of theory. All Ni(II) complexes were activated with diethylaluminum chloride (Et2AlCl), so that C2 showed the highest activity [6600 kg mol?1 (Ni) h?1], where the ligand contains a chlorine substituent. Oligomers obtained from the complexes consist mainly of dimer and trimer, and also exhibit high selectivity for linear 1‐butene and 1‐hexene. Both the steric and electronic effects of coordinative ligands affect the catalytic activity and the properties of the catalytic products.  相似文献   

20.
Kinetic models for ethylene polymerization based on a general coordination–insertion mechanism, in which either a monocoordinated species or a bicoordinated species could lead to migratory insertion, were constructed. These models were implemented through the solution of a set of differential equations resulting from the material balances for all the species involved. The application of these kinetic models to monomer consumption for different supported catalysts produced very good fittings and allowed the estimation of the kinetic rate constants of each elementary step. Although the same kinetic scheme was used to describe all the observations, the results of the fitting showed that the supported chromium species behaved very differently according to the support. Only in the case of the silica‐supported catalysts was mechanical fragmentation of the particles observed during the course of the reaction, and this implied the inclusion of a new term in the model. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3464–3472, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号