首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three‐component polyaddition of diamines, carbon disulfide (CS2), and diacrylates in an aqueous/organic biphasic medium produced a polymer capable of adsorbing rare metals. By using a 1:1 mixture of toluene and H2O, the polyaddition reaction of 1,3‐di‐4‐piperidylpropane (1), CS2, and 1,6‐hexanediol diacrylate (2) proceeded efficiently in the presence of Et3N to produce a poly(dithiourethane‐amine) with a high proportion of dithiourethane units almost quantitatively. Quantitative formation of 1‐CS2 adducts in the aqueous phase was followed by efficient reaction with diacrylate at the biphasic interface. The resulting poly(dithiourethane‐amine) adsorbed Pd(II) and Pt(IV) efficiently under acidic conditions due to the high affinity of thiocarbonyl sulfur atoms for soft metal ions. The polymers showed highly selective adsorption of Pd(II) from a mixture of metal ions [Pd(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II)], indicating their potential utilization for selective recovery of rare‐metals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Polyaddition of a kojic acid dimer and diisocyanates yielded polyurethane with metal‐coordination ability owing to the phenolic hydroxyl groups of kojic acid. Although the kojic acid dimer contains two phenolic and two aliphatic hydroxyl groups, 1,5‐diazabicyclo[4.3.0]non‐5‐ene catalyzed polymerization proceeded through highly selective reactions of the aliphatic hydroxyl groups without any protection of the phenolic hydroxyl groups. The resulting polymers complexed with FeCl3, and specific colorizations were observed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Various water‐soluble hyperbranched poly(ester amine)s were synthesized by the direct polyaddition of diamines to diacrylates in the absence of a catalyst. Each diamine contained a secondary amino group and a primary amino group such as 1‐(2‐aminoethyl)piperazine, N‐methyl‐1,3‐propanediamine, or N‐ethylethylenediamine. When the ratio of diacrylate to diamine was 1/1, no gelation was observed throughout the polymerization. When the ratio of diacrylate to diamine was 3/2, no crosslinking occurred in the diluted solution, whereas an insoluble network formed in the concentrated solution. Fourier transform infrared and mass spectrometry were used to investigate the reaction procedure. The secondary amino group of diamine reacted faster with the vinyl group of diacrylate; this resulted in the formation of the intermediate with an acrylate group and two active hydrogen atoms attached to a nitrogen atom. Further self‐polyaddition of the intermediate, a kind of AB2‐type monomer, gave the hyperbranched poly(ester amine). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2340–2349, 2002  相似文献   

4.
Tetraphenylporphyrin‐end‐functionalized polycyclohexane (H2TPP‐PCHE) and its metal complexes (MTPP‐PCHE) were synthesized as the first successful example of porphyrin‐end‐functionalized transparent and stable polymers with a well‐controlled and defined polymer chain structure. Chloromethyl‐end‐functionalized poly(1,3‐cyclohexadiene) (CM‐PCHD) was synthesized as prerequisite prepolymer by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium and chloro(chloromethyl)dimethylsilane. CM‐end‐functionalized PCHE (CM‐PCHE) was prepared by the complete hydrogenation of CM‐PCHD with p‐toluenesulfonyl hydrazide. H2TPP was incorporated onto the polymer chain end by the addition of 5‐(4‐hydroxyphenyl)‐10,15,20‐triphenylporphyrin to CM‐PCHE. The complexation of H2TPP‐PCHE and Zn(OAc)2 (or PtCl2) yielded a zinc (or platinum) complex of H2TPP‐PCHE. H2TPP‐PCHE and MTPP‐PCHE were readily soluble in common organic solvents, and PCHE did not inhibit the optical properties of the H2TPP, ZnTPP, and PtTPP end groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A homotelechelic macroligand bearing two 2,2′:6′,2″‐terpyridin‐4′‐yl units, as chain ends, is used as building block for the preparation of a linear metallo‐supramolecular chain‐extended polymer. The macroligand has been prepared by nitroxide‐mediated polymerization (NMP) of styrene using a bis‐terpyridine‐functionalized NMP initiator. The controlled character of the NMP process has been confirmed by detailed characterization of the polymer by size‐exclusion chromatography, nuclear magnetic resonance spectroscopy as well as mass spectrometry. Subsequently, the self‐assembly with FeII ions into the chain‐extended metallopolymer and the disassembly thereof, in the presence of a strong competitive ligand, has been studied by UV–vis absorption spectroscopy and diffusion‐ordered NMR spectroscopy. The reversibility of the formation of the metallo‐supramolecular material, when addressed by external stimuli, could be proven. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
New polyazomethines have been synthesized by the reaction between 2,5‐dihydroxy‐1,4‐benzoquinone and siloxane diamines differing by the siloxane sequence length. A dimer has also been prepared as a model compound. The products were characterized by spectral (FTIR and 1H‐NMR) and elemental analyses, GPC, viscosity measurements, solubility tests, and transmission electron microscopy (TEM). The different properties have been investigated by adequate techniques: thermal (DSC and TGA), spectral (UV–vis and fluorescence spectroscopy), redox (Differential Pulse Voltammetry). pH‐sensitivity and metal complexing ability were also evaluated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1862–1872, 2008  相似文献   

7.
We designed a 3,6‐dibromo‐9‐hexyl‐9H‐carbazole derivative with the blue emissive iridium complex bis[2‐(4,6‐difluorophenyl)pyridyl‐N,C2′](picolinato)iridium(III) (FIrpic) linked at the alkyl terminal. Based on this monomer, novel 3,6‐carbazole‐alt‐tetraphenylsilane copolymers grafted with FIrpic were synthesized by palladium‐catalyzed Suzuki coupling reaction, and the content of FIrpic in the polymers could be controlled by feed ratio of the monomers. The polymer films mainly show blue emission from FIrpic, and the emission intensity from the polymer backbones is much weaker compared with the doped analogues, which demonstrates an efficient energy transfer from polymeric host to covalently bonded guest. The phase separation in the polymers was suppressed, which can be identified by atomic force microscopy and designed electroluminescent (EL) devices. EL devices based on the polymers exhibited blue phosphorescence from FIrpic. The luminous efficiency of preliminary devices reached 2.3 cd/A, and the efficiency roll‐off at high current densities was suppressed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1859–1865, 2010  相似文献   

8.
The polyaddition of 1,4‐bis[(3‐ethyl‐3‐oxetanyl)methoxymethyl]benzene with 2,2′‐bis[(4‐chloroformyl)oxyphenyl]propane was examined with quaternary onium salts as catalysts. When the polyaddition was carried out with tetrabutylphosphonium bromide in chlorobenzene at 120 °C for 24 h, the corresponding poly(alkyl aryl carbonate) with a high molecular weight (number‐average molecular weight = 16,700) was obtained in an almost quantitative yield. It was found from the 1H NMR and 13C NMR spectra of the obtained polymer that the addition reaction proceeded without any side reactions, providing the polycarbonate with pendant chloromethyl groups in the side chain. The polyaddition of bis{[3‐(3‐ethyloxetanyl)]methyl}terephthalate also proceeded smoothly and gave the corresponding polycarbonate with high molecular weight in a good yield. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2304–2311, 2003  相似文献   

9.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

10.
We report the synthesis and ion‐binding properties of four poly(crown‐ethers) displaying either one or two crown‐ethers (15‐crown‐5 or 18‐crown‐6) on every third carbon alongside the backbone. The polymers were synthesized by living anionic ring‐opening polymerization of disubstituted cyclopropane‐1,1‐dicarboxylates monomers. Cation binding of the polychelating polymers and corresponding monomers to Na+ and K+ was evaluated by picrate extraction and isothermal calorimetry titration. This novel family of poly(crown‐ethers) demonstrated excellent initial binding of the alkali ions to the polymers, with a higher selectivity for potassium. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2337–2345  相似文献   

11.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

12.
Soluble, fluorescent, terpyridine‐substituted, conjugated polymers were prepared and characterized. The polymer chains included a defined oligo(phenylenevinylene) fragment, on which the terpyridine‐functional group was attached. The polymers were blue‐fluorescent with emission peaks at 400–427 nm in tetrahydrofuran solutions. Upon chelation with the Zn(II) cation, the emission maxima were shifted to a longer wavelength by as much as 113 to 506–526 nm. A model compound was also prepared to aid the structural characterization. The ratio of terpyridine to Zn2+ in the polymer complex was found to be 1:1 on the basis of spectroscopic evidence, which included mass spectrometry, 1H NMR, and Job titration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2338–2345, 2006  相似文献   

13.
An amphiphilic comb‐like copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly((oxyethylene)9 methacrylate) (POEM) side chains, PVC‐graft‐POEM was synthesized via atom transfer radical polymerization. This comb copolymer was complexed with LiCF3SO3 to form a solid polymer electrolyte. FTIR and FT‐Raman spectroscopy indicate that lithium salts are dissolved in the ion conducting POEM domains of microphase‐separated graft copolymer up to 10 wt % of salt concentration. Microphase‐separated structure of the materials and the selective interaction of lithium ions with POEM domains were revealed by transmission electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry. The maximum ionic conductivity of 4.4 × 10?5 S/cm at room temperature was achieved at 10 wt % of salt concentration, above which salts are present as less mobile species such as ion pairs and higher order ionic aggregates, as characterized by FT‐Raman spectroscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1443–1451, 2009  相似文献   

14.
Episulfide polymerization offers a number of features that are uncommon in other ring‐opening anionic mechanisms. Besides the negligible sensitivity to water, the most distinctive and novel one is likely to be the role of disulfides, which may act both at the levels of chain transfer and end‐capping, producing polymers that feature both terminal and internal disulfides. In this article, we have qualitatively studied the kinetics of chain transfer and measured the thiolate–disulfide exchange equilibrium constants. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2233–2249, 2008  相似文献   

15.
The ability of thiyl radicals to add to terminal unsaturations in an efficient way made them considered being one of the click reactions. Recently, thiol‐yne addition reactions have been used extensively for the synthesis of crosslinked networks and dendrimers and postpolymerization functionalization protocols. Herein, we report a novel step‐growth type reaction for highly functional linear polymers using a monoalkyne and dithiol compound. First, we investigated the model reaction between 1‐octyne and 1‐octanethiol as well as 1,4‐butanedithiol compounds, which were initiated via self‐, thermal‐, and UV‐initiation; the UV‐initiation was found to be the most efficient method and completed within 2‐h reaction time. The same conditions were applied for the polymerization of four different functional alkynes bearing different functional groups with two dithiol compounds. All polymerizations resulted in highly functional linear polymers with number averaged molecular weights ranging from 5 to 30 kDa, except for propargylic acid and its methyl ester, where only oligomers formed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
This article deals with the Kumada Catalyst Transfer Polycondensation (KCTP) of 4,7‐dioctylbenzo[2,1‐b:3,4‐b']dithiophene ( BDP‐Oct ) using Ni(II) catalyst or In/cat combination. A combination of MALDI MS, GPC, and 31P NMR spectroscopy is used to reveal the failure of the KCTP of this particular monomer. Intermolecular transfer reactions to monomer appeared to prevent the formation of polymer. This result is remarkable, since isomeric benzo[1,2‐b:4,5‐b']dithiophene polymerizes in a controlled way. The presence of a “non‐aromatic double bond” in annulated monomers is discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1706–1712  相似文献   

17.
This work aims at developing an approach to Ru(II)(Tpy)2‐functionalized hydrogels and exploring the coupling of the hydrogels with the Belousov‐Zhabotinsky (BZ) reaction. Based on free radical polymerization, two synthetic routes are developed. The first one is the direct gelation by copolymerization of acrylamide as hydrophilic component and Ru(II)(Tpy)2 as the functional group. The second one is carried out through a combined approach. A terpyridine‐containing hydrogel is first prepared and then post‐functionalized by coordination between Ru(III)(Tpy)Cl3 and terpyridine groups in the hydrogel network. Utilizing the synthetic hydrogels, the reversible redox responsiveness, the coupling with the BZ reaction, the occurrence and the self‐oscillating properties of the BZ reaction in the hydrogel networks are studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2214–2222  相似文献   

18.
A new series of organometallic/inorganic composite Langmuir‐Blodgett (LB) films consisting of a rigid‐rod polyplatinyne polymer coordinated with 2,7‐bis(buta‐1,3‐diynyl)‐9,9‐dihexylfluorene (denoted as PtP) as the π‐conjugated organometallic molecule, an europium‐substituted polyoxometalate (POM; POM = Na9EuW10O36, K13[Eu(SiW11O39)2] and K5[Eu(SiW11O39)(H2O)2]) as the inorganic component, and an amphiphilic behenic acid (BA) as the auxiliary film‐forming agent were prepared. Structural and photophysical characterization of these LB films were achieved by π–A isotherms, absorption and photoluminescence spectra, atomic force microscopy imaging, scanning tunneling microscopy, and low‐angle X‐ray diffraction. Our experimental results indicate that stable, well‐defined, and well‐organized Langmuir and LB films are formed in pure water and POM subphases, and the presence of Eu‐based POM in the subphase causes an area expansion. It is proposed that a lamellar layered structure exists for the PtP/BA/POM LB film in which the POM and PtP molecules can lay down with the interfacial planes. Luminescence spectra of the prepared hybrid LB films show that near‐white emission spectra can be obtained due to the dual‐emissive nature of the mixed PtP/POM blends. These Pt‐polyyne‐based LB films displayed interesting electric conductivity behavior. Among them, PtP/BA/POM 13‐layer films showed a good electrical response, with the tunneling current up to ±100 nA when the voltage was monitored between ?1 and 7 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 879–888, 2010  相似文献   

19.
Effective cationic addition polymerization of 1,4‐dioxene, a six‐membered cyclic olefin with two oxygen atoms adjacent to the double bond, was performed using a simple metal halide catalyst system in dichloromethane. The polymerization was controlled when the reaction was conducted using GaCl3 in conjunction with an isobutyl vinyl ether–HCl adduct as a cationogen at –78°C to give polymers with predetermined molecular weights and relatively narrow molecular weight distributions. The long‐lived properties of the propagating species were further confirmed by a monomer addition experiment and the analyses of the product polymers by 1H NMR and MALDI–TOF–MS. Although highly clean propagation proceeded, the apparent rate constant changed during the controlled cationic polymerization of 1,4‐dioxene. The reason for the change was discussed based on polymerization results under various conditions. The obtained poly(1,4‐dioxene) exhibited a very high glass transition temperature (Tg) of 217°C and unique solubility. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The synthesis and self‐polyaddition of new monomers, o‐, m‐, and p‐[(3‐ethyloxetane‐3‐yl)methoxyethyl]benzoic acid (o‐EOMB, m‐EOMB, and p‐EOMB) containing both oxetanyl groups and carboxyl groups were examined. The reactions of o‐EOMB, m‐EOMB, and p‐EOMB in the presence of tetraphenylphosphonium bromide as a catalyst in o‐dichlorobenzene at 150–170 °C resulted in self‐polyaddition to give the corresponding hetero‐telechelic polymers poly(o‐EOMB), poly(m‐EOMB), and poly(p‐EOMB) with Mns = 14,500–33,400 in satisfactory yields. The Mn of poly(o‐EOMB) decreased at higher reaction temperatures than 150 °C, unlike those of poly(m‐EOMB) and poly(p‐EOMB), possibly due to inter‐ or intraester exchange side reactions. It was also found that the thermal properties and solubilities of these polymers were supposed with the proposed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7835–7842, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号