首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Na0.74Ta3O6, a Low‐Valent Oxotantalate with Multiple Ta–Ta Bonds The title compound was prepared in a sealed tantalum tube through the reaction of Ta2O5, tantalum and Na2CO3 in a NaCl flux at 1570 K within 5 d. The crystal structure of Na0.74Ta3O6 (a = 713.5(1), b = 1027.4(2), c = 639.9(1) pm, Immm, Z = 4) was determined by single crystal X‐ray means. The structure is isomorphous with NaNb3O5F [1]. The characteristic structural units are triply bonded Ta12 dumb‐bells with eight square‐prismatically co‐ordinated O ligands. Four Ta2, each octahedrally surrounded by O atoms, are side‐on bonded weakly to the binuclear Ta2O8 complex, thus forming a Ta6 propellane‐like cluster. The lattice parameters of three additional MxTa3O6 phases, M = Li, Mn, and Yb, are reported.  相似文献   

2.
Synthesis and Crystal Structure of U2Ta6O19, a New Compound with “Jahnberg‐Structure” and a Note to the First Oxide Chlorides in the Systems Th/Nb/O/Cl and Th/Zr(Hf)/Nb/O/Cl Black crystals of U2Ta6O19 with hexagonal shape were obtained (at T1) by chemical transport using HCl (p (HCl, 298 K) = 1 atm; silica tube) as transport agent in a temperature gradient (T2 → T1; 1000 °C → 950 °C) and using a mixture of UO2, Ta2O5, and HfO2 (or ZrO2) (1 : 2 : 2) as starting materials (at T2). For the structure determination the best result was achieved in space group P63/mcm (No. 193, a = 6.26(2) Å, c = 19.86(6) Å). U2Ta6O19 is isotypical to Th2Ta6O19. In the crystal structure each uranium atom is surrounded by oxygen atoms like a bi‐capped trigonal antiprism and tantalum atoms like a pentagonal bipyramid (CN = 7). Like the “Jahnberg Structures” both coordination polyhedra arrange themselves in separate layers (U–O‐polyhedra, in o‐, Ta–O‐polyhedra in p‐layers) so that in the direction of the c‐axis the sequence of layers is p‐p‐o. Using chemical transport it was possible to prepare the compounds Th12Nb16O63Cl2 and Th8M4Nb16O63Cl2 (M = Zr, Hf), which are the first quaternary and quinquinary examples in these systems. They crystallize isotypically.  相似文献   

3.
The following complex oxynitride perovskites have been prepared: LaMg1/3Ta2/3O2N, LaMg1/2Ta1/2O5/2N1/2, and BaSc0.05Ta0.95O2.1N0.9. Synchrotron X-ray powder diffraction analyses show that LaMg1/3Ta2/3O2N and LaMg1/2Ta1/2O5/2N1/2 are isostructural to the oxide La2Mg(Mg1/3Ta2/3)O6 (space group P21/n), whereas BaSc0.05Ta0.95O2.1N0.9 has a simple cubic symmetry similarly to BaTaO2N. The orderings of octahedral cations are markedly diminished in the above oxynitrides, as compared with the related oxides such as La2Mg(Mg1/3Ta2/3)O6 and Ba2ScTaO6. The optical band gaps are similar for the homologous compositions, LaMg1/3Ta2/3O2N, LaMg1/2Ta1/2O5/2N1/2 and LaTaON2 (1.9 eV), and BaSc0.05Ta0.95O2.1N0.9 and BaTaO2N (1.8 eV), while the absorption edges become broader for the complex derivatives. As revealed from the impedance spectroscopic analysis, the oxynitrides have clearly different dielectric components from those of comparable oxides containing Ta5+. Impedance spectroscopy reveals interesting capacitor geometry in BaSc0.05Ta0.95O2.1N0.9 in which the semiconducting oxynitride grains are separated by insulating secondary phases. Most notably BaSc0.05Ta0.95O2.1N0.9 has a bulk component with a high relative permittivity (κ=7300) and the grain boundary component with an even higher κ.  相似文献   

4.
The mixed‐valent oxotantalate Eu1.83Ta15O32 was prepared from a compressed mixture of Ta2O5 and the metals in a sealed Ta ampoule at 1400 °C. The crystal structure was determined by means of single crystal X‐ray diffraction: space group R3¯, a = 777.2(6) pm and c = 3523.5(3) pm, Z = 3, 984 symmetrically independent reflections, 83 variables, RF = 0.027 for I > 2σ (I). The structure is isotypic to Ba2Nb15O32. The salient feature is a [Ta(+8/3)6O12iO6a] cluster consisting of an octahedral Ta6 core bonded to 12 edge‐bridging inner and six outer oxygen atoms. The clusters are arranged to slabs which are sandwiched by layers of [Ta(+5)3O13] triple octahedra. Additional Ta(+5) and Eu(+2) atoms provide the cohesion of these structural units. Twelve‐fold coordinated Eu(+2) atoms are situated on a triply degenerate position 33 pm displaced from the threefold axis of symmetry. A depletion of the Eu(+2) site from 6 to 5.5 atoms per unit cell reduces the number of electrons available for Ta‐Ta bonding from 15 to 14.67 electrons per cluster. Between 125 and 320 K Eu1.83Ta15O32 is semi‐conducting with a band gap of 0.23 eV. The course of the magnetization is consistently described with the Brillouin function in terms of a Mmol/(NAμB) versus B/T plot in the temperature range 5 K — 320 K and at magnetic flux densities 0.1 T — 5 T. At moderate flux densities (< 1 T) the magnetic moment agrees fairly well with the expected value of 7.94 μB for free Eu (2+) ions with 4f7 configuration in 8S7/2 ground state. Below 5 K, anisotropic magnetization measurements at flux densities B < 1 T point to an onset of an antiferromagnetic ordering of Eu spins within the layers and an incipient ferromagnetic ordering perpendicular to the layers.  相似文献   

5.
Herein, we discuss the synthesis as well as material and photochemical characterization of nanometer‐sized Ta2O5 decorated, in a controlled fashion, on top of 20 nm diameter SiO2 particles to yield a composite oxide with a tunable band‐gap width. Particular emphasis is paid to control of particle size, and control of the distribution of the overlying oxide. The nanoscale dimension imparts a high surface area and introduces quantum confinement effects that displace the conduction band more negatively and the valence band more positively on the electrochemical scale of potentials. This band shift results in an increase of the number of possible participants in photocatalytic reactions. The band shift is shown to result in an increase in driving force for thermodynamically feasible reactions. By decorating SiO2 with smaller‐sized Ta2O5, the interplay of the Lewis acidity of SiO2 and the contact area between Ta2O5 and SiO2 is utilized to develop a photocatalyst with higher photoactivity than pure Ta2O5.  相似文献   

6.
Nanomaterials with helical morphologies have attracted much attention owing to their potential applications as nanosprings, chirality sensors and in chiral optics. Single‐handed helical Ta2O5 nanotubes prepared through a supramolecular templating approach are described. The handedness is controlled by that of the organic self‐assemblies of chiral low‐molecular‐weight gelators (LMWGs). The chiral LMWGs self‐assemble into single‐handed twisted nanoribbons through H‐bonding, hydrophobic association, and π‐π stacking. The Ta2O5 nanotubes are formed by the adsorption and polycondensation of Ta2O5 oligomers on the surfaces and edges of the twisted organic nanoribbons followed by removal of the template. The optical activity of the nanotubes is proposed to originate from the chiral defects on the inner surfaces of the tubular structures. Single‐handed twisted LiTaO3 nanotubes can also be prepared using Ta2O5 nanotubes.  相似文献   

7.
Alkali niobates and tantalates are currently important lead‐free functional oxides. The formation and decomposition energetics of potassium tantalum oxide compounds (K2O?Ta2O5) were measured by high‐temperature oxide melt solution calorimetry. The enthalpies of formation from oxides of KTaO3 perovskite and defect pyrochlores with K/Ta ratio of less than 1 stoichiometry—K0.873Ta2.226O6, K1.128Ta2.175O6, and K1.291Ta2.142O6—were experimentally determined, and the values are (?203.63±2.92) kJ mol?1 for KTaO3 perovskite, and (?339.54±5.03) kJ mol?1, (?369.71±4.84) kJ mol?1, and (?364.78±4.24) kJ mol?1, respectively, for non‐stoichiometric pyrochlores. That of stoichiometric defect K2Ta2O6 pyrochlore, by extrapolation, is (?409.87±6.89) kJ mol?1. Thus, the enthalpy of the stoichiometric pyrochlore and perovskite at K/Ta=1 stoichiometry are equal in energy within experimental error. By providing data on the thermodynamic stability of each phase, this work supplies knowledge on the phase‐formation process and phase stability within the K2O?Ta2O5 system, thus assisting in the synthesis of materials with reproducible properties based on controlled processing. Additionally, the relation of stoichiometric and non‐stoichiometric pyrochlore with perovskite structure in potassium tantalum oxide system is discussed.  相似文献   

8.
Ordered mesoporous thin films of composites of rutile TiO2 nanocrystals with amorphous Ta2O5 are fabricated by evaporation‐induced self‐assembly followed by subsequent heat treatment beyond 780 °C. Incorporation of selected amounts of Ta2O5 (20 mol %) in the mesoporous TiO2 film, together with the unique mesoporous structure itself, increased the onset of crystallization temperature which is high enough to ensure the crystallization of amorphous titania to rutile. The ordered mesoporous structure benefits from a block‐copolymer template, which stabilizes the mesostructure of the amorphous mixed oxides before crystallization. The surface and in‐depth composition analysis by X‐ray photoelectron spectroscopy suggests a homogeneous intermixing of the two oxides in the thin film. A detailed X‐ray absorption fine structure measurement on the composite film containing 20 mol % Ta2O5 and heated to 800 °C confirms the amorphous nature of the Ta2O5 phase. Photocatalytic activity evaluation suggests that the rutile nanocrystals in the synthesized ordered mesoporous thin film possess good ability to assist the photodegradation of rhodamine B in water under illumination by UV light.  相似文献   

9.
Tantalum nitride (Ta3N5) modified with various O2‐evolution cocatalysts was employed as a photocatalyst for water oxidation under visible light (λ>420 nm) in an attempt to construct a redox‐mediator‐free Z‐scheme water‐splitting system. Ta3N5 was prepared by nitriding Ta2O5 powder under a flow of NH3 at 1023–1223 K. The activity of Ta3N5 for water oxidation from an aqueous AgNO3 solution as an electron acceptor without cocatalyst was dependent on the generation of a well‐crystallized Ta3N5 phase with a low density of anionic defects. Modification of Ta3N5 with nanoparticulate metal oxides as cocatalysts for O2 evolution improved water‐oxidation activity. Of the cocatalysts examined, cobalt oxide (CoOx) was found to be the most effective, improving the water‐oxidation efficiency of Ta3N5 by six to seven times. Further modification of CoOx/Ta3N5 with metallic Ir as an electron sink allowed one to achieve Z‐scheme water splitting under simulated sunlight through interparticle electron transfer without the need for a shuttle redox mediator in combination with Ru‐loaded SrTiO3 doped with Rh as a H2‐evolution photocatalyst.  相似文献   

10.
Potassium‐containing zirconium(IV)/titanium(IV) tantalum(V) oxides, K3TiTa7O21 ( 1 ) and K3ZrTa7O21 ( 2 ), of K3Nb8O21‐type of compounds are afforded from potassium‐molybdate flux. Both compounds crystallize in the hexagonal space group P63/mcm (no. 193) with a = 908.69(2), c = 1202.83(7) pm and c/a = 1.324 (Z = 2) for 1 and a = 913.30(3), c = 1219.21(6) pm and c/a = 1.335 (Z = 2) for 2 , respectively. The Structural motif of [MTa7O21]3– (M = Ti4+ or Zr4+) consists of edge‐shared (M,Ta)6O24‐units that are similar to corner‐sharing Ta6O27 units of synthetic soro‐silicate K3Ta3Si2O13 and double borate K3Ta3B2O12. The solid state bandgap measurements revealed that calculated values (3.26 eV for K3TiTa7O21 and 3.14 eV for K3ZrTa7O21) are dependent on aperture of Ta–O–Ta bond angle as it was previously shown for perovskite‐type tantalate photocatalysts.  相似文献   

11.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

12.
MAl2Ta35O70 (M = Na, K, Rb), Low-Valent Oxotantalates with Discrete Cuboctahedral Ta6O12 Clusters The title compounds were prepared by reducing Ta2O5 with tantalum and aluminium in the presence of alkali metal carbonates at 1650 K. NaAl2Ta35O70 was characterized by means of a single crystal X-ray structure determination: space group P 3, lattice parameters a = 780.15(7) pm, c = 2621.7(8) pm, Z = 1, 167 variables, RF = 0.048. The structure can be described in terms of a close packing of oxide ions with specific defects. The sequence of the layers is hhcchchcchh. The characteristic structural units are Ta6O12 clusters being substantially stabilized by Ta–Ta bonding (dTa–Ta = 279.3–283.3 pm, 14 electrons per cluster). The sodium cations occupy acentrically and statistically half of the anti-cuboctahedral sites. The compounds are semiconductors with band gaps Ea of 0.2 to 0.3 eV.  相似文献   

13.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

14.
The reaction of Rb2S3, Ta and S in a 1.3 : 1 : 5.6 molar ratio at 400 °C yields red‐orange crystals of the new ternary compound Rb6Ta4S22 being the first tantalum polysulfide containing the dimeric complex anion [Ta4S22]6–. The polysulfide anions are composed of two Ta2S11 subunits which are linked to Ta4S22 units via terminal sulfur ligands. The Ta5+ centers are coordinated by S22– and S2– ligands according to [(Ta22‐η21‐S2)32‐S2)(S)2)22‐η11‐S2)]6–. Every Ta5+ ion is surrounded by seven sulfur ions forming a strongly distorted pentagonal bipyramid. In the crystal structure the discrete [Ta4S22]6– anions are stacked parallel to the crystallographic b‐axis. The Rb+ cations are located between these stacks. Rb6Ta4S22 crystallizes in the monoclinic space group P21/c (No. 14) with a = 11.8253(9) Å, b = 7.9665(4) Å, c = 19.174(2) Å, β = 104.215(9)°, V = 1751.0(2) Å3, Z = 2.  相似文献   

15.
SrTaO2N heated in a helium atmosphere began to release nitrogen of approximately 30 at% at 950 °C while maintaining the perovskite structure and its color changed from orange to dark green. Then it decomposed above 1200 °C to a black mixture of Sr1.4Ta0.6O2.73, Ta2N, and Sr5Ta4O15. The second decomposition was not clearly observed when SrTaO2N was heated in a nitrogen atmosphere below 1550 °C. After heating at 1500 °C for 3 h under a 0.2 MPa nitrogen atmosphere, the perovskite product became dark green and conductive. Structure refinement results suggested that the product was a mixture of tetragonal and cubic perovskites with a decreased ordering of N3−/O2−. The sintered body was changed to an n-type semiconductor after a partial loss of nitrogen to be reduced from the originally insulating SrTaO2N perovskite lattice. LaTiO2N was confirmed to have a similar cis-configuration of the TiO4N2 octahedron as that of TaO4N2 in SrTaO2N. It also released some of its nitrogen at 800 °C changing its color from brown to black and then decomposed to a mixture of LaTiO3, La2O3, and TiN at 1100 °C. These temperatures are lower than those in SrTaO2N.  相似文献   

16.
Tantalum Cluster in an Oxidic Matrix – Synthesis and Structures of Mixed-Valence Oxotantalates M2–δTa15O32 (M = K, Rb (δ = 0); M = Sr (δ = 0.15), Ba (δ = 0.12)) The mixed-valent oxides Sr1.85Ta15O32 ( 1 ), Ba1.88Ta15O32 ( 2 ), K2Ta15O32 ( 3 ), Rb2Ta15O32 ( 4 ) were prepared from appropriate mixtures of Ta2O5, tantalum and the corresponding carbonate at 1520–1670 K in sealed tantalum tubes. According to X-ray single crystal structure analyses the oxides crystallize in the space group R3¯, Z = 1. The lattice parameters in the hexagonal setting are a = 777.36(11), c = 3516.2(7) pm for 1 , a = 778.87(11), c = 3548.1(7) pm for 2 , a = 780.7(2), c = 3573.1(11) pm for 3 , and a = 781.90(11), c = 3593.0(7) pm for 4 . The oxide ions form a defect dense packing with the layer sequence chhhh. Anti-cuboctahedral sites are completely occupied by the alkali metal cations. The alkaline earth cations occupy 92 to 94% of such sites; they are displaced from the centres. Smaller voids are located in the centres of the cuboctahedral Ta6O12 clusters forming the characteristic structural unit of these low-valent oxotantalates. In case of 3 and 4 the clusters have 13 electrons, in case of 1 and 2 they have close to 15 electrons available for Ta–Ta-bonding. Moreover, the structures of the alkali and alkaline earth metal compounds differ notably with respect to the spectrum of Ta–O and Ta–Ta distances in the Ta3O13 octahedra triples forming another characteristic structural unit for these oxides. Such differences are traced back to distinct local charge balances for the uni- and divalent cations. The oxides 2 , 3 are semiconductors with band gaps ranging from 130 to 360 meV.  相似文献   

17.
Rubidium und Caesium Compounds with the Isopolyanion [Ta6O19]8– – Synthesis, Crystal Structures, Thermogravimetric and Vibrational Spectrocopic Analysis of the Oxotantalates A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) The compounds A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) contain the isopoly anion [Ta6O19]8–, which consists of six [TaO6] octahedra connected via corners to form a large octahedron. They transform into each other by reversible hydratation/dehydratation processes, as shown from thermoanalytic measurements (TG/DSC), and show also structural similarities. Cs8[Ta6O19] (tetragonal, I4/m, a = 985.9(1) pm, c = 1403.3(1) pm, Z = 2), the isotypic phases A8[Ta6O19] · 14 H2O (A = Rb/Cs; monoclinic, P21/n, a = 1031.30(6)/1055.4(1) pm, b = 1590.72(9)/1614.9(6) pm, c = 1150.43(6)/1171.4(1) pm, β = 100.060(1)/99.97(2)°, Z = 2) and Rb8[Ta6O19] · 4 H2O (monoclinic, C2/c, a = 1216.9(4) pm, b = 1459.2(5) pm, c = 1414.7(4) pm, β = 90.734(6)°, Z = 4) have been characterised on the basis of single crystal x‐ray data. Furthermore the RAMAN spectra allow a detailled comparison of the hexatantalate ions in the four compounds.  相似文献   

18.
The title complex, catena‐poly[di‐μ3‐acetato‐κ6O:O:O′‐tetra‐μ2‐acetato‐κ4O:O4O:O′‐diaquabis(pyridine‐κN)trimanganese(II)], [Mn3(CH3COO)6(C6H5N)2(H2O)2]n, is a true one‐dimensional coordination polymer, in which the MnII centres form a zigzag chain along [010]. The asymmetric unit contains two metal centres, one of which (Mn1) lies on an inversion centre, while the other (Mn2) is placed close to an inversion centre on a general position. Since all the acetates behave as bridging ligands, although with different μ2‐ and μ3‐coordination modes, a one‐dimensional polymeric structure is formed, based on trinuclear repeat units (Mn1...Mn2...Mn2′), in which the Mn2 and Mn2′ sites are related by an inversion centre. Within this monomeric block, the metal–metal separations are Mn1...Mn2 = 3.36180 (18) Å and Mn2...Mn2′ = 4.4804 (3) Å. Cation Mn1, located on an inversion centre, displays an [MnO6] coordination sphere, while Mn2, on a general position, has a slightly stronger [MnO5N] ligand field, as the sixth coordination site is occupied by a pyridine molecule. Both centres approximate an octahedral ligand field. The chains are parallel in the crystal structure and interact via hydrogen bonds involving coordinated water molecules. However, the shortest metal–metal separation between two chains [5.3752 (3) Å] is large compared with the intrachain interactions. These structural features are compatible with a single‐chain magnet behaviour, as confirmed by preliminary magnetic studies.  相似文献   

19.
In the title monohydrated cocrystal, namely 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol iodide–1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol–water (1/1/1), C6H16N3O3+·I·C6H15N3O3·H2O, the neutral 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol (taci) molecule and the monoprotonated 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol cation (Htaci+) both adopt a chair conformation, with the three O atoms in axial and the three N atoms in equatorial positions. The cation, but not the neutral taci unit, exhibits intramolecular O—H...O hydrogen bonding. The entire structure is stabilized by a complex three‐dimensional network of intermolecular hydrogen bonds. The neutral taci entities and the Htaci+ cations are each aligned into chains along [001]. In these chains, two O—H...N interactions generate a ten‐membered ring as the predominant structural motif. The rings consist of vicinal 2‐amino‐1‐hydroxyethylene units of neighbouring molecules, which are paired via centres of inversion. The chains are interconnected into undulating layers parallel to the ac plane, and the layers are further held together by O—H...N hydrogen bonds and additional interactions with the iodide counter‐anions and solvent water molecules.  相似文献   

20.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号