首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

2.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

3.
Three coordination compounds with dimensions from 0D to 2D, namely, [Co(bppdca)2(HL1)2] ( 1 ) [Co(bppdca)(L2)(H2O)] · 2H2O ( 2 ) and [Co(bppdca)(L3)] · 3H2O ( 3 ) [bppdca = N,N′‐bis(pyridine‐3‐yl)pyridine‐2,6‐dicarboxamide, H2L1 = 2,5‐pyridinedicarboxylic acid, H2L2 = 4,4′‐oxybisbenzoic acid, H2L3 = 2‐carboxymethylsulfanyl nicotinic acid] were hydrothermally synthesized and structurally characterized. Single crystal X‐ray diffraction analysis reveals that complex 1 is a discrete 0D complex, in which the bppdca ligand and the H2L1 act as the terminal groups to coordinate with the CoII ions. In coordination polymer 2 , two bppdca ligands coordinate in anti configuration with two CoII ions to generate a 28‐membered Co2(bppdca)2 loop, which is further extended into 1D ladder‐like double chain by pairs of L2 ligands. In 3 , the CoII ions are linked by bppdca ligands to generate 1D wave‐like chain, which is further connected by the L3 to form a 2D network. Finally, the coordination compounds 1 – 3 are extended into 3D supramolecular frameworks through the hydrogen bonding interactions. The CoII ions and the bppdca ligands in the title coordination compounds exhibit different coordination characters and conformations. The effect of organic dicarboxylates with different rigidity and length on the structures of CoII coordination compounds was investigated. In addition, the fluorescence and electrochemical behaviors of coordination compounds 1 – 3 were reported.  相似文献   

4.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

5.
The coordination polymers [Cd2(bbmb)2(L1)(HL1)0.5(H2O)]n ( 1 ), [Cd2(bbmb)2(L2)2(H2O) · (H2O)]n ( 2 ), and [Ni(bbmb)2(L3)]n ( 3 ), were synthesized by the hydrothermal reaction of 4,4′‐bis(benzimidazol‐1‐ylmethyl)biphenyl (bbmb) with CdII/NiII ions in the presence of three flexible aliphatic acids [tricarballylic acid (H3L1), succinate (H2L2), and adipate (H2L3)]. Complexes 1 – 3 were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal and X‐ray powder diffraction analyses. Complex 1 presents a 3D 3‐nodal (3,4,4)‐connected net with 3 , 4 , 4T78 topology, 2 exhibits a 3D network with 66‐ dia topology, whereas 3 is a chain structure and further extended by hydrogen bonding interactions to form a 2D supramolecular network. Structural diversity of these complexes indicates that these frameworks could be tuned by the conformation of bbmb ligand and the different coordination modes of the aliphatic carboxylate co‐ligands. The thermal and fluorescence properties, the catalytic activities of complexes 1 – 3 in a Fenton‐like process were investigated.  相似文献   

6.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

7.
Three 3‐amino‐1, 2, 4‐triazole (atz)‐based paramagnetic complexes, [Mn(atz)(pa)]n ( 1 ), {[Mn(atz)1.5(hip)] · H2O}n ( 2 ), and [Mn(H2O)2(atz)2(nb)2] ( 3 ) (H2pa = o‐phthalic acid, H2hip = 5‐hydroxylisophthalic acid, and Hnb = p‐nitrobenzoic acid) were prepared by introducing different carboxylate‐containing aromatic coligands, and structurally and magnetically characterized. Helical MnII‐atz and bent MnII‐pa2– chains are crosslinked by sharing the same metal sites to generate a honeycomb‐shaped framework of 1 . The undulated MnII‐atz layers constructed from 22‐member metallomacrocycles are periodically supported by ditopic hip2– ligands to lead to a pillared‐layer structure of 2 . In contrast, complex 3 is a centrosymmetric mononuclear entity, which is assembled into a three‐dimensional supramolecular network by abundant hydrogen‐bonding interactions. The structural difference of 1 – 3 is significantly due to the combinations of the flexible coordination modes adopted by the mixed atz and carboxylate groups. Weak and comparable antiferromagnetic couplings are observed in the nearest neighbors of 1 – 3 , which are cooperatively transmitted either by short carboxylate and/or atz heterobridges or by weak non‐covalent interactions.  相似文献   

8.
Investigation into a hydrothermal reaction system with transition‐metal (TM) ions, 1,4‐bis(1,2,4‐triazol‐1‐lmethyl)benzene (BBTZ) and various charge‐tunable Keggin‐type polyoxometalates (POMs) led to the preparation of four new entangled coordination networks, [CoII(HBBTZ)(BBTZ)2.5][PMo12O40] ( 1 ), [CuI(BBTZ)]5[BW12O40] ? H2O ( 2 ), [CuII(BBTZ)]3[AsWV3WVI9O40] ? 10 H2O ( 3 ), and [CuII5(BBTZ)7(H2O)6][P2W22Cu2O77(OH)2] ? 6 H2O ( 4 ). All compounds were characterized by using elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The mixed valence of W centers in compound 3 was further confirmed by using XPS spectroscopy and bond‐valence sum calculations. In the structural analysis, the entangled networks of 1 – 4 demonstrate zipper‐closing packing, 3D polythreading, 3D polycatenation, and 3D self‐penetration, respectively. Moreover, with the enhancement of POM negative charges and the use of different TM types, the number of nodes in the coordination networks of 1 – 4 increased and the basic metal–organic building motifs changed from a 1D zipper‐type chain (in 1 ) to a 2D pseudorotaxane layer (in 2 ) to a 3D diamond‐like framework (in 3 ) and finally to a 3D self‐penetrating framework (in 4 ). The photocatalytic properties of compounds 1 – 4 for the degradation of methylene blue under UV light were also investigated; all compounds showed good catalytic activity and the photocatalytic activity order of Keggin‐type species was initially found to be {XMo12O40}>{XW12O40}>{XW12?nTMnO40}.  相似文献   

9.
The use of pyridine‐2,4‐dicarboxylic acid (H2pydc) in the construction of SrII and SrII‐MII (M=Co, Ni, Zn and Cu) coordination polymers is reported. Eight complexes, that is, [Sr(pydc)H2O]n ( 1 ), [MSr(pydc)2(H2O)2]n (M=Co ( 2 ), Ni ( 3 ), Zn ( 4 )), [ZnSr(pydc)2(H2O)7]n?4 nH2O ( 5 ), [SrCu(pydc)2]n ( 6 ), [SrCu(pydc)2(H2O)3]n?2 nH2O ( 7 ), and [Cu3Sr2(pydc)4(Hpydc)2(H2O)2]n ( 8 ), have been synthesized via dexterously choosing the appropriate strontium sources and transition metal salts, and rationally controlling the temperature of the reaction systems. Complexes 1 , 2 ( 3 , 4 ), 6 , and 8 display four types of 3‐D framework structures. Complexes 5 and 7 exhibit a 2‐D network and a 1‐D chain structure, respectively. The 2‐D complex 7 can be reversibly transformed into 3‐D compound 6 through temperature‐induced solvent‐mediated structural transformation. The luminescent property studies indicated that complex 1 shows a strong purple luminescent emission and 4 exhibits a strong violet luminescence emission. The magnetic properties of 2 , 3 , and 8 were also studied. Antiferromagnetic MII???MII interactions were determined for these complexes.  相似文献   

10.
Two novel coordination polymers [Mn3(EPDA)2(H2O)8 · (ENA) · (ClO4) · 0.5(HClO4) · (CH3OH) · 2(H2O)]n ( 1 ) and[Zn(EPDA)(H2O)]n ( 2 ) (EPDA = 5‐ethylpyridine‐2, 3‐dicarboxylic acid, ENA = 5‐ethylnicotinate acid) were synthesized and characterized by IR and UV/Vis spectroscopy, elemental analysis, PXRD, TGA, photoluminescence, and single‐crystal X‐ray diffraction. Organic EPDA2– and ENA anions, the decomposition products of ENA‐Pmmi by removing the –Pmmi group under in situ solvothermal conditions, were obtained by performing the reactions of ENA‐Pmmi with MnII or ZnII perchlorate. In complex 1 , the MnII ions were bridged by μ4‐EPDA2– anions to give a 2D positively charged layer, and the free ENA anion and solvent molecules are filled into the gap between the layers through hydrogen bonding interactions to form a sandwich structure. In compound 2 , the μ3‐EPDA2– anions bridge divalent Zn2+ ions to form a 1D chain, and the ENA anions are not involved in stacking interactions but left in the residual solution. In addition, the ENA‐Imoi instead of ENA‐Pmmi, was selected to further investigate this reaction (ENA‐Pmmi and ENA‐Imoi are imazethapyr homologues), and the same experimental results could be obtained.  相似文献   

11.
Reactions of 5‐nitroisophthalic acid (NO2‐H2ip), 1,4‐bis(imidazol‐1′‐yl)butane (bimb), and Ni(NO3)2 ? 6 H2O gave rise to four metal–organic frameworks (MOFs), [Ni2(NO2‐ip)2(bimb)1.5]n ( 1 ), [Ni4(NO2‐ip)3(bimb)2(OH)2(H2O)]n ? (CH3CH2OH)0.5 n ( 2 ), [Ni(NO2‐ip)(bimb)1.5(H2O)]n ? (H2O)n ? (CH3CH2OH)0.5 n ( 3 ), and [Ni(NO2‐ip) (bimb)(μ‐H2O)]n ? (H2O)n ( 4 ). The metal/ligand ratio, pH value, and solvent exerted a subtle but crucial influence on the formation of complexes 1 – 4 , which possess different visual color and crystal structures. Complex 1 exhibits a twofold interpenetrating 3D pillared bilayer framework composed of binuclear and mononuclear NiII units, whereas complex 2 is a 3D chiral network that consists of asymmetric tetranuclear NiII units. Complexes 3 and 4 are 3D layer‐pillared frameworks that consist of mononuclear NiII ions and a 3D six‐connected network of μ‐water‐bridged dinuclear NiII units, respectively. Interestingly, achiral 4 can be transformed into chiral 2 by using a solvent‐mediated single‐crystal‐to‐single‐crystal process without any chiral auxiliary. Magnetic analyses of 2 and 4 show the occurrence of antiferromagnetic interactions. Complex 3 is difficult to obtain directly as a single solid phase, but it can be homogeneously formed by solvent‐mediated transformations from 1 , 2 , and 4 .  相似文献   

12.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

13.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

14.
The self‐assembly reaction of zinc ions with tetracyanometalates in the presence of the tridentate chelated ligand 2,2′:6′,2′′‐terpyridine (terpy) yielded three cyanide‐bridged bimetallic compounds of general formula Zn(terpy)(H2O)M(CN)4 [M = Ni ( 1 ), Pd ( 2 ), Pt ( 3 )]. Compounds 1 – 3 were characterized by X‐ray diffraction (XRD), infrared spectroscopy (IR), and thermogravimetric (TG) analysis. Single‐crystal XRD analysis revealed that compounds 1 – 3 are isostructural and the structure consists of [Zn(terpy)(H2O)]2+ moieties and [M(CN)4]2– units linked alternatively to generate a one‐dimensional (1D) linear chain. The chains are further connected together through hydrogen bonding and π–π stacking interactions, forming a 3D supramolecular network. IR spectroscopic analysis indicated the presence of cyanide groups and terpy ligands in the structure. TG and powder XRD results showed that compounds 1 – 3 have higher thermal stabilities and exhibited irreversible for desorption/resorption of one coordinated water molecule.  相似文献   

15.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

16.
Three new coordination polymers, namely, [CuL0.5] ( 1 ), [Co(H2L)(H2O)2][H2O] ( 2 ), and [(CdCl)0.5Cd0.25(H2L)0.5] ( 3 ) were synthesized under hydrothermal conditions from the corresponding CuII, CoII, and CdII salts with a multidentate ligand of 2,2′,2′′,2′′′‐[2,3,5,6‐tetramethyl‐1,4‐phenylenebis(methylenenitrilo)]tetraacetic acid (H4L). The complexes were characterized by single‐crystal X‐ray diffraction, IR, thermogravimetric, and elemental analyses. Complex 1 crystallizes in the orthorhombic space group Pbca and has a three‐dimensional architecture with infinite two‐dimensional networks linked together by weak Cu–O interactions. Complex 2 crystallizes in the monoclinic space group P2(1) and displays a 2D network. Complex 3 crystallizes in the tetragonal space group P4(2)/ncm and exhibits an infinite 3D architecture that has unusual [Cd2(CO2)4Cl2] dinuclear paddle‐wheel units and [Cd(CO2)4] dodecahedron units. The results showed that the coordination arrangement of central metal atoms and the conformation and coordination mode of organic ligands play an important role in determining the structure of the complexes. The luminescence property of complex 3 was studied in the solid state at room temperature.  相似文献   

17.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

18.
Three coordination polymers, namely {[Cu(5‐nipa)(L22)](H2O)2}n ( 1 ), [Zn(5‐nipa)(L22)(H2O)]n ( 2 ), and {[Cd2(5‐nipa)2(L22)(H2O)3](H2O)3.6}n ( 3 ), were prepared under similar synthetic method based on 1,2‐(2‐pyridyl)‐1,2,4‐triazole (L22) and ancillary ligand 5‐nitro‐isophthalic acid (5‐H2nipa) with CuII, ZnII, and CdII perchlorate, respectively. All the complexes were characterized by IR spectroscopy, elemental analysis, and powder X‐ray diffraction (PXRD) patterns. Single‐crystal X‐ray diffraction indicates that complexes 1 and 2 show similar 1D chain structures, whereas complex 3 exhibits the 2D coordination network with hcb topology. The central metal atoms show distinct coordination arrangements ranging from distorted square‐pyramid for CuII in 1 , octahedron for ZnII in 2 , to pentagonal‐bipyramid for CdII in 3 . The L22 ligand adopts the same (η32) coordination fashion in complexes 1 – 3 , while the carboxyl groups of co‐ligand 5‐nipa2– adopt monodentate fashion in 1 and 2 and bidentate chelating mode in 3 . These results indicate that the choice of metal ions exerts a significant influence on governing the target complexes. Furthermore, thermal stabilities of complexes 1 – 3 and photoluminescent properties of 2 and 3 were also studied in the solid state.  相似文献   

19.
Two new CoII coordination polymers, [Co(L1)0.5(hip)]n ( 1 ) and [Co(L2)(mip) · 2H2O]n ( 2 ) [L1 = 1,1′‐(1,4‐butanediyl)bis‐1H‐benzimidazole, L2 = 1,3‐bis(5,6‐dimethylbenzimidazol‐1‐yl)‐2‐propanol, H2hip = 5‐hydroxyisophthalic acid, H2mip = 5‐methylisophthalic acid], were synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, and X‐ray single‐crystal diffraction. Complex 1 exhibits a 3D supramolecular network constructed with 2D (4,4) layer by O–H ··· O hydrogen bonding. Complex 2 has 1D ladder‐like chains, which are further assembled into a 3D supramolecular framework by π–π stacking interactions. In addition, fluorescence and catalytic properties of compounds 1 and 2 were investigated in solid state.  相似文献   

20.
Two new dinuclear MnII cluster-based metal-organic frameworks, namely [Mn2(L)(DMPU)3]n ( 1 ) and [Mn(L)0.5(4,4'-bipy)0.5(H2O)]n ( 2 ) (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid, DMPU = 1,3-dimethyltetrahydropyrimidin-2(1H)-one, 4,4'-bipy = 4,4'-bipyridine), were solvothermally synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and magnetic studies. Compound 1 crystallizes in the monoclinic P21/n space group and displays a 3D framework with 4-connected crb/BCT -type topology, and compound 2 crystallizes in the monoclinic C2/c space group and displays a 3D framework with (4,6)-connected sqc422 -type topology. The magnetic studies of compounds 1 and 2 show the presence of weak antiferromagnetic interactions within the dinuclear MnII units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号