首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The authors describe the fabrication of an interconnected edge-exposed graphene nanostructure via chemical vapor deposition (CVD) of foliated graphene onto a network of alumina nanofibers. The fibers such obtained are shown to enable ultra-sensitive voltammetric determination of dopamine (DA), uric acid (UA) and ascorbic acid (AA). The electrode displays powerful and persistent electro oxidative behavior and excellent electron transport properties. Cyclic voltammetry and differential pulse voltammetry demonstrate excellent selectively and sensitivity for AA, DA and UA, with typical peaks at ?0.08 V, +0.19 V, and +0.34 V (vs. SCE), respectively. Under optimum conditions, the calibration plots are linear in the 1–80 μM range for DA, in the 1–60 μM range for UA, and in the 0.5–60 μM range for UA, with detection limits of 0.47 μM, 0.28 μM and 0.59 μM, respectively. The sensor was successfully applied to the simultaneous determination of DA and UA in the presence of AA in spiked urine sample.
Graphical abstract Material with high density of graphene foliates grown over highly aligned nano-dimensional ceramic fibers is used as electrode for simultaneous highly sensitive electrochemical determination of DA in the presence of UA and AA with a considerably low limit of detection.
  相似文献   

2.
A voltammetric sensor is presented for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). It is based on a gold electrode (GE) modified with carboxyl-functionalized graphene (CFG) and silver nanocube functionalized DA nanospheres (AgNC@PDA-NS). The AgNC@PDA-NS nanocomposite was characterized by scanning electron microscopy and UV-Vis spectroscopy. The electrochemical behavior of the modified electrode was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The modified electrode displays good electrocatalytic activity towards DA (typically at 0.14 V vs. Ag/AgCl) and UA (typically at 0.29 V vs. Ag/AgCl) even in the presence of ascorbic acid. Response to DA is linear in the concentration range of 2.5 to 130 μM with a detection limit of 0.25 μM. Response to UA is linear in the concentration range of 10 to 130 μM with a detection limit of 1.9 μM. In addition, the sensitivity for DA and UA is 0.538 and 0.156 μA μM?1 cm?2, respectively. The modified electrode also displays good stability, selectivity and reproducibility.
Graphical abstract The gold electrode modified with polydopamine nanospheres functionalized with silver nanocube and carboxylated graphene is used for simultaneous determination of DA and UA in the presence of AA, with wide linear range and low detection limit.
  相似文献   

3.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
  相似文献   

4.
A glassy carbon electrode (GCE) was anodically oxidized by cyclic voltammetry (CV) in 0.05 M sulfuric acid to introduce hydroxy groups on its surface (GCEox). Next, an imidazolium alkoxysilane (ImAS) is covalently tethered to the surface of the GCEox via silane chemistry. This electrode is further modified with graphene oxide (GO) which, dispersed in water, spontaneously assembles on the electrode surface through electrostatic interaction and π-interaction to give an electrode of type GO/ImAS/GCE. Electroreduction of GO and GCEox by CV yields electroreduced GO (erGO) and an electrode of the type erGO/ImAS/GCE. This electrode displays excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Three fully resolved anodic peaks (at ?50 mV, 150 mV and 280 mV vs. Ag/AgCl) are observed during differential pulse voltammetry (DPV). Under optimized conditions, the linear detection ranges are from 30 to 2000 μM for AA, from 20 to 490 μM for UA, and from 0.1 to 5 μM and from 5 μM to 200 μM (two linear ranges) for DA. The respective limits of detection (for an S/N of 3) are 10 μM, 5 μM and 0.03 μM. The GCE modified with erGO and ImAS performs better than a bare GCE or a GCE modified with ImAS only, and also outperforms many other reported electrodes for the three analytes. The method was successfully applied to simultaneous analysis of AA, DA and UA in spiked human urine.
Graphical abstract Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid is achieved on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, through anodic treatment of glassy carbon and silane chemistry.
  相似文献   

5.
The authors describe a voltammetric sensor for simultaneous determination of dopamine (DA), uric acid (UA), L-tyrosine (Tyr), and the diuretic drug hydrochlorothiazide (HCTZ). The assay is based on the use of graphene nanowalls deposited on a tantalum substrate. The nanowalls are characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and cyclic voltammetry. The nanowalls are vertically grown on the substrate by direct-current arc plasma jet chemical vapor deposition. The modified electrode is shown to enable simultaneous differential pulse voltammetric determination of DA, UA, Tyr, and HCTZ. The graphene nanowalls display a large specific surface, high conductivity, and a large number of catalytically active sites for oxidation of analytes. Simultaneous detection is performed best at a pH value of 7.0 and at peak potentials of 0.124 V (vs. SCE) for DA, 0.256 V for UA, 0.536 V for Tyr and 0.708 V for HCTZ. The respective detection limits are 0.04 μM, 0.1 μM, 0.6 μM and 0.4 μM. The results show that this graphene wall modified electrode is a promising tool for the design of sensitive, selective, and stable sensors.
Graphical abstract The graphene-based differential pulse voltammetric sensor for simultaneous determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide exhibits high selectivity, sensitivity, and stability.
  相似文献   

6.
The amphiphilic copolymer poly(vinylbenzyl thymine-co-styrene-co-maleic anhydride) (PSVM) was synthesized by radical copolymerization of styrene, vinylbenzyl thymine, and maleic anhydride. Its chemical structure was proven by using 1H nuclear magnetic resonance spectroscopy. PSVM was used as a host to prepare a composite consisting of carbon nanotubes and gold nanoparticles by in-situ reduction. The morphology of the nanocomposites was studied by transmission electron microscopy. A glassy carbon electrode coated with this composite is shown to be a viable sensor for the determination of dopamine (DA), paracetamol (PAT) (both at a pH value of 7), and uric acid (UA) (at pH 6). Two linear relationships exists between amperometric current and analyte concentrations. For DA, the linear analytical ranges are from 0.1 to 200 μM and from 200 to 1000 μM. For PAT, the ranges are from 0.1 to 200 μM and from 200 to 1000 μM. For UA, the ranges are from 0.05 to 1000 μM. The respective limits of detection (for S/N = 3) are 56, 27 and 50 nM. The sensor is highly sensitive, stable, reproducible, and selective.
Graphical abstract A hybrid nanocomposite (CNT/PSVM/Au) of carbon nanotube (CNT) – Au nanoparticle composite based on the amphiphilic copolymer poly(vinylbenzyl thymine/styrene-co-maleic anhydride) (PSVM) was prepared through in situ reduction. This nanocomposite was immobilized on a glassy carbon electrode (GCE) to fabricate an electrochemical sensor to determine dopamine (DA), paracetamol (PAT) and uric acid (UA).
  相似文献   

7.
Rafati  Amir Abbas  Afraz  Ahmadreza  Hajian  Ali  Assari  Parnaz 《Mikrochimica acta》2014,181(15):1999-2008

We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.

The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid

  相似文献   

8.
Glutathione coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction methods and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg), with good selectivity over other amino acids. The GSH-Au/AgNCs have two emissions at 616 nm and 412 nm when excited at 360 nm. With the increased concentration of Cys, the ratio of the emission intensities (I616/I412) linearly decreases with Cys in concentration ranging from 0.05 to 10 μM and from 10 to 50 μM, respectively. With increased concentrations of Arg, the ratio of I616/I412 linearly decreases with Arg concentration ranging from 0 to 50 μM and from 50 to 100 μM, respectively. The probe was applied to the determination of Cys and Arg in spiked samples of serum and urine where it gave good recoveries.
Graphical abstract Glutathione-coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg).
  相似文献   

9.
A composite was prepared from a Co(II)-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) by an in situ growth method. The material was electrodeposited on a glassy carbon electrode (GCE). The modified GCE was used for the simultaneous voltammetric determination of dopamine (DA) and uric acid (UA), typically at working potentials of 0.11 and 0.25 V (vs. SCE). The morphology and structure of the nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The modified electrode exhibits excellent electroanalytical performance for DA and UA owing to the synergistic effect of the high electrical conductivity of GO and the porosity of ZIF-67. By applying differential pulse voltammetry, a linear response is found for DA in the 0.2 to 80 μM concentration range, and for UA between 0.8 and 200 μM, with detection limits of 50 and 100 nM (at S/N =?3), respectively. Further studies were performed on the effect of potential interferents, and on electrode stability and reproducibility. The modified GCE was applied to the simultaneous detection of DA and UA in spiked human urine and gave satisfying recoveries.
Graphical abstract Schematic of the preparation procedure of GO-ZIF67 and electrochemical reaction mechanisms of UA and DA at the GO-ZIF67-modified glassy carbon electrode (GCE). GO: graphene oxide; ZIF-67: Co(II)-based zeolitic imidazolate framework.
  相似文献   

10.
Titanium dioxide nanoparticles (NPs) were synthesized by a sol-gel method from hexafluorotitanic acid using poly(ethylene glycol) as a capping agent. The crystal structure and morphology of the NPs were characterized by X-ray diffraction, FESEM, and TEM. The NPs were used to modify a graphite paste electrode for simultaneous determination of uric acid (UA) and guanine (GU). The effect of calcination temperature on crystal structure and electrocatalytic activity was investigated. The electrochemical responses to UA and GU at bare GP, TiO2–350/GP, and TiO2–600/GP electrodes were compared. The DPV oxidation peaks of UA and GU were found to be strongest at around 304 and 673 mV, respectively, against Ag/AgCl reference electrode, and this are well separated for effective simultaneous determination. UA and GU can be simultaneously determined by this method. Response is linear within the range 0.1–500 μM and 0.1–40 μM for UA and GU, respectively. The detection limits are 70 nM for UA and 50 nM for GU (at an S/N? ratio of?3). The TiO2–600/GP electrode showed excellent analytical performance when analyzing spiked urine and serum samples.
Graphical abstract A graphical representation of cubic TiO2 nanoparticle formation during hydrolysis through sol-gel process.
  相似文献   

11.
We have fabricated, in a single step, carbon ceramic electrodes modified with a poly(acridine orange) film containing reduced graphene oxide. They display electrocatalytic activity to ascorbic acid (AA) and uric acid (UA) at pH 4.5. The anodic peak potentials of AA and UA are separated by 276 mV so that they can be well resolved in cyclic voltammetry. UA and AA were simultaneously determined in a mixture at working potentials of 170 and 400 mV, respectively. Under optimized conditions, the calibration curves for AA and UA cover the 0.8–5,000 μM and 0.6–900 μM concentration range, respectively, while detection limits are 0.3 μM and 0.2 μM. The electrode was applied to determine AA and UA in urine samples.
Figure
DPV curves of RGO–PAO/CCE in the phosphate buffer solution (pH 4.5) containing 5.0?×?10?5 mol L?1 AA with different concentration of UA (a?→?f: 0, 1, 3, 5, 7, 9?×?10?6 mol L?1)  相似文献   

12.
A carbon ceramic electrode (CCE) was fabricated from a composite consisting of sol-gel, ceramic graphite, multi-walled carbon nanotubes and the natural carotenoid crocin. The resulting sensor is shown to allow for the determination of NADH at a rather low working potential of 0.22 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant (ks) and the surface coverage of the modified electrode are 16.8 s?1 and 22 pmol·cm?2, respectively. The sensor shows excellent and linear response in solutions of pH 7.0 over the 0.5 to 100 μM NADH concentration range, a 0.1 μM detection limit, and a sensitivity of 251.3 nA·μM?1·cm?2.
Graphical abstract Schematic of the preparation of a carbon ceramic electrode modified with electropolymerized crocin on multi-walled carbon nanotubes. This sensor has a strongly decreased oxidation overpotential for NADH.
  相似文献   

13.
Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and utilized to construct a voltammetric biosensor for trichloroacetic acid (TCA). The biosensor was prepared by immobilizing hemoglobin (Hb) on a glassy carbon electrode (GCE) that was modified with the Ag@GNRs. Cyclic voltammetry revealed a pair of symmetric redox peaks, indicating that direct electron transfer occurs at the Hb on the Ag@GNR-film. The electron transfer rate constant is as high as 2.32 s?1. The good electrocatalytic capability and large surface area of the Ag@GNR-film is beneficial in terms of electron transfer between Hb and the underlying electrode. The modified GCE, best operated at ?0.4 V (vs. SCE), exhibits electrocatalytic activity toward TCA in the 0.16 μM to 1.7 μM concentration range, with a 0.12 μM detection limit (at an S/N ratio of 3).
Graphical abstract Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and used to immobilize hemoglobin to construct an effective biosensor for trichloroacetic acid.
  相似文献   

14.
A photoelectrochemical wire microelectrode was constructed based on the use of a TiO2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05–20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained.
Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.
  相似文献   

15.
A composite consisting of chitosan containing azidomethylferrocene covalently immobilized on sheets of reduced graphene oxide was drop-casted on a polyester support to form a screen-printed working electrode that is shown to enable the determination of nitrite by cyclic voltammetry and chronoamperometry. Both reduction and oxidation of nitrite can be accomplished due to the high electron-transfer rate of this electrode. Under optimal experimental conditions (i.e. an applied potential of 0.7 V vs. Ag/AgCl in pH 7.0 solution), the calibration plot is linear in the 2.5 to 1450 μM concentration range, with an ~0.35 μM limit of detection (at a signal-to-noise ratio of 3). The sensor was successfully applied to the determination of nitrite in spiked mineral water samples, with recoveries ranging between 95 and 101 %.
Graphical abstract We describe the design of ferrocene-functionalized reduced graphene oxide electrode and its electrocatalytic properties towards the determination of nitrite. Compared to a reduced graphene oxide electrode, the sensor exhibits enhanced electrocatalytic activity towards both oxidation and reduction of nitrite.
  相似文献   

16.
A glassy carbon electrode (GCE) was modified with poly(L-arginine) (P-Arg), reduced graphene oxide (rGO) and gold nanoparticle (AuNP) to obtain an electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and L-tryptophan (L-Trp) in the presence of ascorbic acid (AA). The modified GCE was prepared via subsequent ‘layer-by-layer’ deposition using an electrochemical technique. The surface morphology of the modified electrode was studied by scanning electron microscopy, and electrochemical characterizations were carried out via cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode showed excellent electrocatalytic activity toward DA, 5-HT and L-Trp at pH 7.0. Figures of merit for the differential pulse voltammetric reponse are as follows: (a) Response to DA is linear in two intervals, viz. 1.0–50 nM and 1.0–50 μM DA concentration range, the typical working voltage is 202 mV (vs. Ag/AgCl), and the detection limit is 1 nM (at an S/N ratio of 3). For 5-HT, the respective data are 10 to 500 nM and 1.0 to 10 μM, 381 mV, and 30 nM. For L-Trp, the respective data are 10–70 nM and 10–100 μM, 719 mV, and 0.1 μM. The modified GCE is fairly selective. It was successfully applied to the simultaneous determination of DA, 5-HT, and L-Trp in spiked urine samples, and high recovery rates were found.
Graphical abstract Schematic presentation of the voltammetric sensor based on a glassy carbon electrode modified with poly(L-arginine), reduced graphene oxide (rGO) and gold nanoparticle (GCE/P-Arg/ErGO/AuNP) for simultaneous determination of dopamine (DA), serotonin (5-HT) and L-tryptophan (L-Trp).
  相似文献   

17.
The authors describe a method for amperometric determination of thiodiglycol (TDG), the main hydrolysis product of sulfur mustard. The electrode consists of a mixture of graphene nanosheets, silver nanoparticles and the ionic liquid octylpyridinium hexafluorophosphate. Electrochemical oxidation of TDG was performed by cyclic voltammetry at pH 4 and revealed a pair of well-defined redox peaks at potentials of 0.43 and 0.19 V (vs. Ag/AgCl). Amperometric detection was accomplished over a dynamic range that is linear in the 10–3700 μM concentration range. The detection limit (at an S/N of 3) is 6 μM. The electrode was applied to the determination of TDG in (spiked) waste water and gave recoveries that ranged from 98.2 to 103.3 %.
Graphical abstract The article describes an amperometric sensor for the determination of thiodiglycol, the main hydrolysis product of sulfur mustard. The electrode was constructed by using graphene nanosheets, silver nanoparticles and an ionic liquid electrode, and it was successfully applied to the determination of thiodiglycol in (spiked) waste water samples.
  相似文献   

18.
The authors describe an electrochemical sensor for hydrogen peroxide (H2O2). It was constructed by consecutive, selective modification of a glassy carbon electrode (GCE) with Prussian Blue (PB), layered molybdenum disulfide (MoS2), and reduced graphene oxide (rGO). The properties of the modified GCE were characterized via high-resolution transmission electron microscopy, UV-vis spectroscopy and X-ray diffraction. The electrochemical properties of the electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibits excellent electrocatalytic activity for the reduction of hydrogen peroxide in comparison to GCEs modified with MoS2-rGO or PB only. Response is linear in the 0.3 μM to 1.15 mM H2O2 concentration range at a working analytical voltage of 0.1 V, with a 0.14 μM detection limit. The electrochemical sensitivity is 2883.5 μA·μM?1·cm?2, and response is fast (<10 s). The sensor is selective, stable and reproducible. This is attributed to the efficient electron transport properties of the MoS2-rGO composite and the high loading with PB.
Graphic abstract Prussian Blue nanoparticles were deposited on MoS2-rGO modified glassy carbon electrode by electrochemical method. This sensor was used for the detection of H2O2 in tap water and river water.
  相似文献   

19.
Under visible-light irradiation, a cathodic photoelectrochemical (PEC) sensor is presented for highly sensitive determination of Cr(VI) at a potential of ?0.25 V (vs SCE). PbS quantum dots (QDs) were capped with mercaptoacetic acid and assembled on the surface of an indium tin oxide (ITO) electrode via the linker poly(diallyl dimethyl ammonium chloride) providing a photoactive sensor. Cr(VI) accepts the photoelectrons generated by the PbS QDs. This promotes the separation of electron holes and enhances the cathodic photocurrent generated by a 470-nm LED. The sensor has 10 pM detection limit and a linear working range from 0.02 nM to 2 μM of chromate. The method was successfully applied to the determination of Cr(VI) and total chromium in spiked environmental water samples.
Graphical abstract Schematic illustration of the photocurrent enhancement response of ITO/PbS toward chromium(VI). In the presence of Cr(VI) (red line), Cr(VI) accepts the photoelectrons generated by the PbS QDs under 470-nm LED irradiation, resulting in improved photocurrent of ITO/PbS.
  相似文献   

20.
Iron sulfides with different atomic ratios were synthesized by a hydrothermal method and used to modify a glassy carbon electrode. The various sulfides were compared to each other for their amperometric response to H2O2. It is found that FeS is the most adequate material. Operated in 0.1 M NaOH solution at 0.4 V (vs. Ag/AgCl), the sensor based on FeS displays a linear response that extends from 0.50 μM to 20.5 mM of H2O2, with a sensitivity of 36.4 μA mM?1 cm?2 and a detection limit of 0.15 μM (at an S/N ratio of 3). The sensor is selective, stable and reproducible.
Graphical abstract Schematic of the synthesis of pomegranate flower-like FeS by a hydrothermal route using ferric chloride and thiourea (SC(NH2)2) as the precursors, and ethanolamine (EA) as the structure-guiding auxiliary agent. A glassy carbon electrode (GCE) modified with this material allows for amperometric sensing of hydrogen peroxide in 0.1 M NaOH solution with a 0.15 μM detection limit. 
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号