首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Along with the strengthening of the control processes of irradiation systems used in industrial and medical sectors, direct measurement of spectra emitted by X‐ray tubes is becoming a necessity to ensure beam quality. To reach that aim, a research project was initiated at the Henri Becquerel Laboratory to develop a system to measure, with semiconductor detectors (Ge and CdTe), the spectra emitted by X‐ray tubes. However, the measured spectra are distorted by artifacts associated with the detection processes. Therefore, two algorithms were developed to correct for the pile‐up distortions due to the high count rate and for the photon escape phenomenon, which takes place into the crystal of the semiconductor detectors. Our system was tested using the X‐ray tube used by the Gustave Roussy (France) radiobiological service. Measurements with two high voltages (70 and 200 kV) were carried out using a CdTe detector equipped with a micrometric positioning system and a specific collimator to reduce the high count rate. The measured and calculated spectra using the XCOMP5 and SpeKcalc V1.0 programs were compared. This comparison reveals a good agreement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A simple experiment to characterize the gating properties of X‐ray area detectors using pulsed X‐ray sources is presented. For a number of time‐resolved experiments the gating uniformity of area detectors is important. Relative gating delays between individual modules and readout chips of PILATUS2 series area X‐ray detectors have been observed. For three modules of a PILATUS 300K‐W unit the maximum gating offset between the modules is found to be as large as 30 ns. On average, the first photosensor module is found to be triggered 15 ns and 30 ns later than the second and the third modules, respectively.  相似文献   

4.
The energy spectrum analysis of X‐ray intensities with semiconductor detectors is often difficult because their energy resolution is usually not good enough to separate the different X‐ray lines. Metallic magnetic calorimeters (MMCs) can be an alternative; they can offer both high energy resolution and high intrinsic detection efficiency from 0 to 100 keV. MMCs are thermal detectors; that is to say, the energy of each absorbed photon is measured as a temperature elevation. At very low temperature, typically few tens of mK, a very large pulse height‐to‐noise ratio can be obtained that is an essential condition for high energy resolution. We are involved in the development of MMCs for metrology applications such as the determination of hard X‐ray emission intensities. For that purpose, we conceived an MMC with an energy resolution of 57 eV around 30 keV. The absorber is made of gold providing high intrinsic detection efficiency even for a small volume, greater than 90% below 60 keV. We will describe the physical principle and the practical realisation of this detector and discuss its performances by analysing the energy spectrum obtained from a 133Ba source. Preliminary outcomes of relative emission intensities of the K X‐ray of cesium are presented and compared with other experimental data and theoretical calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
《X射线光谱测定》2004,33(4):312-316
In recent years, new components for x‐ray analysis have been developed: capillary optics, microfocus x‐ray tubes and compact detectors, e.g. energy‐dispersive detectors without liquid nitrogen cooling. Microfocus tubes have a relatively low power but their brightness is up to 100 times higher than for normal x‐ray tubes which are used in diffractometry. A combination of these tubes with highly efficient capillary optical elements allows one to obtain parallel or focused beams of high intensity. Combining such a special source with detectors of different kinds, a compact system can be realized which may be successfully used in micro‐XRF, in diffraction and microdiffraction, etc. The system presented is designed in a modular way so that the components may be replaced by each other. Some examples of applications of such systems are reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A new setup and commissioning of transient X‐ray absorption spectroscopy are described, based on the high‐repetition‐rate laser pump/X‐ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high‐repetition‐rate and high‐power laser is incorporated into the setup with in‐house‐built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser‐on and laser‐off signals simultaneously. The capability of picosecond transient X‐ray absorption spectroscopy measurement was demonstrated for a photo‐induced spin‐crossover iron complex in 6 mM solution with 155 kHz repetition rate.  相似文献   

7.
Typically, X‐ray absorption near‐edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal‐to‐background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X‐ray regime with reasonable efficiency requires solid‐state detectors, which have limitations due to the inherent dead‐time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy‐dependent efficiency non‐linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X‐ray detectors is a viable method for measuring soft X‐ray partial fluorescence yield spectra without dead‐time. The feasibility of this technique is further demonstrated using α‐Fe2O3 as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X‐ray‐induced damage.  相似文献   

8.
X‐ray tubes have a broad range of applications worldwide, including several techniques for atomic physics, like X‐ray fluorescence, as well as for medical imaging, like computed tomography. The performances of X‐ray imaging detectors have shown to be significantly sensitive to the incident beam spectrum. Therefore, an accurate knowledge of the X‐ray beam becomes necessary for the emission source characterization and the whole imaging process comprehension. Direct measurements and suitable Monte Carlo simulations may be used to establish the X‐ray spectra. Dedicated Monte Carlo simulation routines, based on the PENELOPE code, have been developed to determine the Bremsstrahlung X‐ray spectra generated by conventional X‐ray tubes. The simulated spectra have been validated by comparison with the corresponding experimental data showing an overall good agreement. The incorporation of a suitably designed virtual grid allowed to assess the angular distribution of Bremsstrahlung yield, showing a remarkable anisotropy. In addition, a dedicated program has been developed for virtual imaging, which enables to perform suitable X‐ray absorption contrast images. Also, the developed program includes a user‐friendly graphic interface to allow the upload of required input parameters, which include setup arrangement, beam characteristics, sample properties and image simulation parameters (spatial resolution, tracks per run, etc.). The software includes dedicated subroutines which handle the physical process from X‐ray generation up to detector signal acquisition. The aim of the developed program is to perform virtual imaging by means of absorption contrast and using conventional X‐ray sources, which may be a useful tool for the study the X‐ray imaging techniques in several research fields as well as for educational purposes. The performed comparisons with experimental data have shown good agreement. The obtained results for X‐ray imaging may constitute useful information for the comprehension and improvement of X‐ray image quality, like absorption contrast optimization, detail visualization, definition and detectability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The topic under discussion is the influence of X‐ray polarization and filtration, as well as the influence of detectors count rate on sensitivity and detection limits (DLs) in spectrometers with energy dispersion (EDS). Parameters calculation technique for searching optimal analysis conditions has been developed. Typical DLs of elements with medium and high atomic numbers on various spectrometers are given (on wave dispersive spectrometers (WDS), energy dispersive spectrometers (EDS) without polarization and energy‐dispersive polarized‐beam X‐ray spectrometers (EDPXRS). Apparently, EDS variants are preferred for determining elements with Z > 62–65, and EDPXRS spectrometers with concave targets and increased aperture are preferred for determining elements with medium atomic numbers.  相似文献   

10.
A portable X‐ray fluorescence (XRF) spectrometer system was constructed using an Amptek Mini‐X X‐ray tube and an X‐123 compact spectrometer. The spectrometer is optimised for the best limits of detection. Its analytic properties are tested and compared with an analogous laboratory‐based instrument, an external beam proton‐induced X‐ray emission spectrometry (PIXE) setup. Depending on elements in question the thick target detection limits of this portable XRF device are comparable or even lower than the PIXE setup. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The design and performance characterization of a new light‐weight and compact X‐ray scintillation detector is presented. The detectors are intended for use on the new I11 powder diffraction beamline at the third‐generation Diamond synchrotron facility where X‐ray beams of high photon brightness are generated by insertion devices. The performance characteristics of these detection units were measured first using a radioactive source (efficiency of detection and background count rate) and then synchrotron X‐rays (peak stability, light yield linearity and response consistency). Here, the results obtained from these tests are reported, and the suitability of the design for the Diamond powder beamline is demonstrated by presenting diffraction data obtained from a silicon powder standard using a prototype multicrystal analyser stage.  相似文献   

12.
Most energy‐dispersive X‐ray fluorescence (EDXRF) instruments use Si diodes as X‐ray detectors. These provide very high energy resolution, but their sensitivity falls off at energies of 10–20 keV. They are well suited for measuring the K lines of elements with Z < 40, but for heavier elements, one must use K lines at low efficiency or use L or M lines that often overlap other lines. Either is a challenge for accurate quantitative analysis. CdTe detectors offer much higher efficiency at high energy but poorer energy resolution compared with Si diodes. In many important EDXRF measurements, both high and low Z elements are present. In this paper, we will compare the precision and accuracy of systems using the following: (1) a high resolution Si detector, (2) a high efficiency CdTe detector, and (3) a composite system using both detectors. We will show that CdTe detectors generally offer better analytical results than even a high resolution silicon drift detectors for K lines greater than 20 or 25 keV, whereas the high resolution Si detectors are much better at lower energies. We will also show the advantages of a combined system, using both detectors. Although a combined system would be more expensive, the increased accuracy, precision, and throughput will often outweigh the small increase in cost and complexity. The systems will be compared for representative applications that include both high and low Z elements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐resolution X‐ray fluorescence spectrometer based on Rowland circle geometry was developed and installed at BL14W1 XAFS beamline of Shanghai Synchrotron Radiation Facility. The spectrometer mainly consists of three parts: a sample holder, a spherically curved Si crystal, and an avalanche photodiode detector. The simplicity of the spectrometer makes it easily assembled on the general purpose X‐ray absorption beamline. X‐ray emission spectroscopy and high‐resolution X‐ray absorption near edge spectroscopy can be carried out by using this spectrometer. X‐ray emission preliminary results with high‐resolution about 3 eV of Mn compounds were obtained, which confirmed the feasibility of the spectrometer. The application about Eu (III) retention on manganese dioxide was also studied using this spectrometer. Compared with conventional X‐ray absorption fine structure spectroscopy technique, the fluorescence peak of probed element [Eu (III) Lα] and matrix constituents (Mn Kα) were discriminated using this technique, indicating its superiority in fluorescence detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

15.
There is a growing interest in the biomedical community in obtaining information concerning the distribution and local chemical environment of metals in tissues and cells. Recently, biological X‐ray fluorescence microscopy (XFM) has emerged as the tool of choice to address these questions. A fast‐scanning high‐flux X‐ray microprobe, built around a recently commissioned pair of 200 mm‐long Rh‐coated silicon Kirkpatrick–Baez mirrors, has been constructed at BioCAT beamline 18ID at the Advanced Photon Source. The new optical system delivers a flux of 1.3 × 1012 photons s?1 into a minimum focal spot size of ~3–5 µm FWHM. A set of Si drift detectors and bent Laue crystal analyzers may be used in combination with standard ionization chambers for X‐ray fluorescence measurements. BioCAT's scanning software allows fast continuous scans to be performed while acquiring and storing full multichannel analyzer spectra per pixel on‐the‐fly with minimal overhead time (<20 ms per pixel). Together, the high‐flux X‐ray microbeam and the rapid‐scanning capabilities of the BioCAT beamline allow the collection of XFM and micro X‐ray absorption spectroscopy (microXAS) measurements from as many as 48 tissue sections per day. This paper reports the commissioning results of the new instrument with representative XFM and microXAS results from tissue samples.  相似文献   

16.
A new quick‐scanning X‐ray absorption fine‐structure (QXAFS) system has been established on beamline 1W1B at the Beijing Synchrotron Radiation Facility. As an independent device, the QXAFS system can be employed by other beamlines equipped with a double‐crystal monochromator to carry out quick energy scans and data acquisition. Both continuous‐scan and trapezoidal‐scan modes are available in this system to satisfy the time scale from subsecond (in the X‐ray absorption near‐edge structure region) to 1 min. Here, the trapezoidal‐scan method is presented as being complementary to the continuous‐scan method, in order to maintain high energy resolution and good signal‐to‐noise ratio. The system is demonstrated to be very reliable and has been combined with in situ cells to carry out time‐resolved XAFS studies.  相似文献   

17.
18.
Currently, most detector efficiency calculations for X‐ray detectors assume that the source is a point source on the axis of symmetry of the detector, but this is not always accurate. We have devised a Monte Carlo program to simulate photon transport in Si(Li), SDD and planar Ge detectors that natively handles finite, tilted and off‐axis sources. Although electron transport is not handled at this stage, photon transport is completely handled, including absorption from filters and multiple scattering in the detector crystal. The K escape peak is handled for both silicon and germanium detectors, and the L escape peak is also handled for germanium detectors. Our efficiency results compare very well with previous work when idealized systems are simulated, and the effect of a non‐idealized system is presented. Escape peak intensity ratios are given for both silicon detectors (K peak only) and germanium detectors (K and L peaks), and the results for the K escape peaks agree well with previous work. Results are presented for a recent annular detector system, which is a good example of systems that are poorly handled under previous efficiency calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The efficiency of high‐resolution pixel detectors for hard X‐rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron‐based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency: a novel scintillator based on doped Lu2SiO5 (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO‐based thin crystal together with the high stopping power of the material allows for high‐performance indirect X‐ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible‐light and the afterglow are investigated. A set‐up to study the effect of the thin‐film scintillator's temperature on its conversion efficiency is described as well. It delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X‐ray imaging systems based on different diffraction‐limited visible‐light optics and CCD cameras using among others LSO‐based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high‐resolution computed tomography for life sciences.  相似文献   

20.
The recent developments in X‐ray detectors have opened new possibilities in the area of time‐resolved pump/probe X‐ray experiments; this article presents the novel use of a PILATUS detector to achieve X‐ray pulse duration limited time‐resolution at the Advanced Photon Source (APS), USA. The capability of the gated PILATUS detector to selectively detect the signal from a given X‐ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of α‐perylene illustrates the possibility of reaching an X‐ray pulse duration limited time‐resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X‐ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号