首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A second generation ionic liquid matrix (ILM), N,N‐diisopropylethylammonium α‐cyano‐4‐hydroxycinnamate (DEA‐CHCA), was developed for the characterization of polar biodegradable polymers. It is compared with five solid matrices typically used for the characterization of these polymers and one other new ILM. It is shown that use of the ILM, DEA‐CHCA, allows maximum signal with minimum laser intensity which minimizes polymer degradation. In these conditions, the DEA‐CHCA ILM is able to assist in the ionization of analytes in an efficient but soft manner. These qualities produce spectra that allow an accurate and sensitive determination of the number average molecular weights, weight average m.w., and polydispersity index of labile polar polymers. With such polymers, many solid matrices produce spectra showing extensive polymer degradation leading to the underestimation of molecular weights. The distribution of intact analyte peaks obtained with the ILM DEA‐CHCA allows for identification of the fine structure of complex copolymers. ILMs were much less susceptible to effects of extraction delay times on molecular weight determination than were solid matrices. The liquid nature of the matrix is an important reason for the outstanding results obtained for labile analyte polymers. No comparable results could be obtained with any known solid matrices or other ILMs. In many cases, the manufacturers' listed molecular weights and polydispersity measurements for biodegradable polymers are determined by size‐exclusion chromatography and the data obtained by that method may differ considerably from the high‐precision matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) results presented here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
Aquatic fulvic acids (AFAs) are demonstrated to be effective matrices for the analysis of various polar compounds (ranging from 100–1500 Da) by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS). The efficiency of AFA as a matrix is shown for a wide range of test compounds, including a number of carbohydrates, cyclodextrins and peptides, with typical detection limits of ~10 µg mL?1. The propensity of AFA to enhance ionization through protonation of peptides, and formation of sodium and potassium adducts of carbohydrates and polyethylene glycol, was noted. Differences were observed in the performances of the two AFA matrices used, a Suwannee River, International Humic Substances Society (IHSS) standard and a locally extracted fulvic acid (LFA). For example, in the analysis of carbohydrate standards, the use of the LFA matrix typically doubled the analyte ion signal intensities and resulted in signal‐to‐noise (S/N) ratios that were 2–4 times better than when the Suwannee River AFA matrix was used. AFA was also used in the analysis of real‐world samples without extraction or purification; cantaloupe juice and acetaminophen tablets were analyzed, and glucose and acetaminophen could easily be identified as respective components. When lower concentrations of fulvic acid were used in the presence of sugars, a reversal of roles was observed in which the sugars functioned as the matrix and significantly enhanced ionization of the AFA components, while ions associated with the sugars themselves were suppressed or absent. Effective as a matrix for a variety of analytes and widely available, AFA is an attractive environmentally friendly choice for use in MALDI applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
There is an increasing need for analyzing metabolism in a single cell, which is important to understand the nature of cellular heterogeneity, disease, growth and specialization, etc. However, single cell analysis is often challenging for the traces of samples. In the present study, porous metal enrichment probe sampling combined with matrix‐assisted laser desorption ionization time of flight mass spectrometry ( MALDI‐TOF‐MS) has been applied for in situ analysis of live onion epidemic cell. Porous probe, treated by corroding copper wire with HCl, was directly inserted into a single cell to get cell solution. A self‐made linear actuator was enough to control the penetration of probe into the target cell accurately. Then samples on the tip of probe were eluted and detected by a commercial MALDI‐TOF‐MS directly. The formation of porous microstructure on the probe surface increased the adsorptive capacity of cell solution. The sensitivity of porous probe sampling was 6 times higher than uncorroded probes generally. This method provides a sensitive and convenient way for the sampling and detection of single cell solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Continuous flow infrared matrix‐assisted laser desorption electrospray ionization (CF IR MALDESI) mass spectrometry was demonstrated for the on‐line analysis of liquid samples. Samples in aqueous solution were flowed through a 50 µm i.d. fused‐silica capillary at a flow rate of 1–6 µL/min. As analyte aqueous solution flowed through the capillary, a liquid sample bead formed at the capillary tip. A pulsed infrared optical parametric oscillator (OPO) laser with wavelength of 2.94 µm and a 20 Hz repetition rate was focused onto the capillary tip for sample desorption and ablation. The plume of ejected sample was entrained in an electrospray to form ions by MALDESI. The resulting ions were sampled into an ion trap mass spectrometer for analysis. Using CF IR MALDESI, several chemical and biochemical reactions were monitored on‐line: the chelation of 1,10‐phenanthroline with iron(II), insulin denaturation with 1,4‐dithiothreitol, and tryptic digestion of cytochrome c. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Atmospheric pressure (AP) matrix‐assisted laser desorption/ionization (MALDI) is known to suffer from poor ion transfer efficiencies as compared to conventional vacuum MALDI (vMALDI). To mitigate these issues, a new AP‐MALDI ion source utilizing a coaxial gas flow was developed. Nitrogen, helium, and sulfur hexafluoride were tested for their abilities as ion carriers for a standard peptide and small drug molecules. Nitrogen showed the best ion transport efficiency, with sensitivity gains of up to 1900% and 20% for a peptide standard when the target plate voltage was either continuous or pulsed, respectively. The addition of carrier gas not only entrained the ions efficiently but also deflected background species and declustered analyte–matrix adducts, resulting in higher absolute analyte signal intensities and greater signal‐to‐noise (S/N) ratios. With the increased sensitivity of pneumatically assisted (PA) AP‐MALDI, the limits of detection of angiotensin I were 20 or 3 fmols for continuous or pulsed target plate voltage, respectively. For analyzing low‐mass analytes, it was found that very low gas flow rates (0.3–0.6 l min?1) were preferable owing to increased fragmentation at higher gas flows. The analyte lability, type of gas, and nature of the extraction field between the target plate and mass spectrometer inlet were observed to be the most important factors affecting the performance of the in‐line PA‐AP‐MALDI ion source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Protein glycation is the non‐enzymatic condensation of sugars with proteins. Although commonly occurring in both the therapeutic and food/beverage industries, protein glycation has not been the focus of many proteomic investigations. This study aims to establish a reliable mass spectrometric method for screening large tandem mass spectrometric (MSMS) datasets for protein glycation with glucose, lactose and maltose. Control experiments using a standard peptide containing a single glycation site led to the discovery of characteristic neutral loss fragmentation patterns in MSMS analysis for glucose, lactose and maltose condensed with peptides. Valid in both tandem time‐of‐flight (TOFTOF) and quadrupole ion trap time‐of‐flight matrix‐assisted laser desorption/ionization (QIT TOF MALDI) mass spectrometers, these neutral loss signatures were then applied to elucidation of modified peptides from a complex human serum albumin (HSA) digest glycated with each of the proposed sugars. Screening of these large datasets was made possible by specifically designed software solutions that enable the input of detailed user‐defined post‐translational modifications that are not included in the universally available databases such as Unimod. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The principle relating to the selection of a proper matrix, cationization reagent, and solvent for matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) of synthetic polymers is still a topic of research. In this work we focused on the selection of a suitable MALDI solvent. Polystyrene PS7600 and poly(ethylene glycol) PEG4820 were analyzed by MALDI‐TOF MS using various solvents which were selected based on the Hansen solubility parameter system. For polystyrene (PS), dithranol was used as the matrix and silver trifluoroacetate as the cationization reagent whereas, for poly(ethylene glycol) (PEG), the combination of 2,5‐dihydroxybenzoic acid and sodium trifluoroacetate was used for all experiments. When employing solvents which dissolve PS and PEG, reliable MALDI mass spectra were obtained while samples in non‐solvents (solvents which are not able to dissolve the polymer) failed to provide spectra. It seems that the solubility of the matrix and the cationization reagent are less important than the polymer solubility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
An online nano‐aerosol sample deposition method for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry is described in which matrix and analyte particles between 50 and 500 nm are aerodynamically focused onto a tight spot, ca. 200 µm in diameter, on the target plate under vacuum. MALDI analysis of the target is performed without additional sample preparation. The method is evaluated with insulin as the analyte and alpha‐cyano‐4‐hydroxycinnamic acid (CHCA) as the matrix. Two preparation modes are compared with conventional dried‐droplet deposition: mixture deposition where a single layer is deposited consisting of particles that contain both matrix and analyte, and layered deposition where an underlayer of matrix particles and an overlayer of analyte particles are deposited separately. Desalting is performed by adding ammonium sulfate to the solution used to generate the matrix aerosol. With mixture deposition, the optimum matrix‐to‐analyte mole ratio is about 500:1 compared with 5000:1 for the conventional dried‐droplet method. With layered deposition, the thicknesses of the matrix and analyte layers are more important determinants of the analyte signal intensity than the matrix‐to‐analyte mole ratio. Analyte signal intensities are independent of matrix layer thickness above 200 nm, and the optimum analyte signal is obtained with an analyte layer thickness of about 100 nm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix‐assisted laser desorption ionization/time of flight mass spectrometry (MALDI‐TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI‐TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI‐TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI‐TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software‐assisted identification at the strain level. Overall, this study shows the importance of MALDI‐TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry‐based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Despite cyanoacrylate fuming being widely used in the forensic science field, its mechanism is not well understood. In this study, matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry is used to study latent fingerprints that have been cyanoacrylate fumed in an attempt to gain insight into the fuming mechanism. In the negative mode mass spectrometry data, four compounds related to the polymerization of cyanoacrylate are identified and their structures are determined from accurate mass and MS/MS. A mechanism is proposed for the formation of these compounds that are regarded as intermediates in the polymerization reaction. In addition, based on the fuming of standard endogenous compounds, we suggest that fatty acids and amino acids are the major catalytic nucleophiles that initiate the polymerization reactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号