首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium‐catalyzed asymmetric transfer hydrogenation of ketones in 2‐propanol. Catalysts containing thioamide ligands derived from L ‐valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L ‐valine‐based hydroxamic acids or hydrazides facilitated the formation of the (S)alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide‐based catalyst systems demonstrate a pseudo‐first‐order dependence on the substrate, whereas pseudo‐zero‐order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate‐limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate‐limiting step of the catalytic reduction reaction.  相似文献   

2.
Decagram quantities of enantiopure (+)‐mefloquine have been produced via kinetic resolution of racemic mefloquine using a ROMP‐gel supported chiral acyl hydroxamic acid resolving agent. The requisite monomer was prepared in a few synthetic steps without chromatography and polymerization was safely performed on a >30 gram scale under ambient conditions. The reagent was readily regenerated and reused multiple times for the resolution of 150 grams of (±)‐mefloquine and other chiral N‐heterocylces.  相似文献   

3.
The use of high‐performance liquid chromatography/mass spectrometry (HPLC/MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy for the kinetic analysis of acyl glucuronide (AG) isomerisation and hydrolysis of the 1‐β‐O‐acyl glucuronides (1‐β‐O‐AG) of phenylacetic acid, (R)‐ and (S)‐α‐methylphenylacetic acid and α,α‐dimethylphenylacetic acid is described and compared. Each AG was incubated in both aqueous buffer, at pH 7.4, and control human plasma at 37°C. Aliquots of these incubations, taken throughout the reaction time‐course, were analysed by HPLC/MS and 1H NMR spectroscopy. In buffer, transacylation reactions predominated, with relatively little hydrolysis to the free aglycone observed. In human plasma incubations the calculated rates of reaction were much faster than for buffer and, in contrast to the observations in buffer, hydrolysis to the free aglycone was a significant contributor to the overall reaction. A diagnostic analytical methodology based on differential mass spectrometric fragmentation of 1‐β‐O‐AGs compared to the 2‐, 3‐ and 4‐positional isomers, which enables selective determination of the former, was confirmed and applied. These findings show that HPLC/MS offers a viable alternative to the more commonly used NMR spectroscopic approach for the determination of the transacylation and hydrolysis reactions of these AGs, with the major advantage of having the capability to do so in a complex biological matrix such as plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The application of sub-2 microm porous particle liquid chromatography (LC) operated at elevated temperatures, coupled with time-of-flight mass spectrometry (MS), to the separation and identification of metabolites of ibuprofen present in human urine following oral administrations is illustrated. The LC/MS system generated a high-resolution analytical separation that, with an analysis time of 20 min, provided a peak capacity in the order of ca. 350. Using this system a total of nine glucuronides of the drug and its metabolites were detected, including a number of isomeric acyl glucuronides of ibuprofen itself, a side-chain-oxidized carboxylic acid acyl glucuronide and a number of acyl glucuronides of various hydroxylated metabolites. The identities of the metabolites were confirmed by their accurate mass values and the presence of the common fragment ions from ibuprofen.  相似文献   

5.
C. Wang  H. Frank  E. Bayer  P. Lu 《Chromatographia》1984,18(7):387-388
Summary 2-Trimethylsiloxycarboxamides are suitable derivatives for direct gas chromatographic resolution of 2-hydroxy-alkanoic acid enantiomers. A fast derivatization procedure is presented which involves preparation of the corresponding acyl chloride by reaction with thionyl chloride, aminolysis to the carboxamide and conversion of the hydroxyl group to the trimethylsilylether. The derivatization entails very little racemization, even with mandelic acid which is very sensitive in this respect.  相似文献   

6.
7.
Treatment of N-acyloxazolidinones with hydroxylamines using samarium triflate as a Lewis acid provides the corresponding hydroxamic acids in 50-98% yields at room temperature. The conversion proceeds with high degree of chemoselectivity and without racemization of chiral centers alpha- to the acyl group. [reaction: see text]  相似文献   

8.
Sulfonatocalix[4]arenes with an appended hydroxamic acid residue can detoxify VX and related V‐type neurotoxic organophosphonates with half‐lives down to 3 min in aqueous buffer at 37 °C and pH 7.4. The detoxification activity is attributed to the millimolar affinity of the calixarene moiety for the positively charged organophosphonates in combination with the correct arrangement of the hydroxamic acid group. The reaction involves phosphonylation of the hydroxamic acid followed by a Lossen rearrangement, thus rendering the mode of action stoichiometric rather than catalytic. Nevertheless, these calixarenes are currently the most efficient low‐molecular‐weight compounds for detoxifying persistent V‐type nerve agents under mild conditions. They thus represent lead structures for novel antidotes that allow treatment of poisonings by these highly toxic chemicals.  相似文献   

9.
陈小峰  邱滔  吕新宇 《合成化学》2016,24(9):780-784
以全氟碘丁烷为原料,分别与4-碘硝基苯和4-碘苯甲酸反应合成了4-全氟丁基硝基苯(1)和4-全氟丁基苯甲酸(3); 1经还原反应,3经酰氯化反应,后再缩合反应制得氟代苯基异羟肟酸(5); 5经络合反应合成了氟代苯基异羟肟酸钴(6), 其结构经 UV-Vis, 1H NMR, FT-IR和HR-MS(EI)表征。在氟两相中考察了其对乙苯氧化的催化性能。结果表明:在全氟己烷中,6 0.04 mmol,于60 ℃反应6 h,乙苯的转化率为49.2%,苯乙酮的选择性为88.3%。6循环使用5次,选择性保持良好。  相似文献   

10.
Functionalized 1,2,3‐triazole heterocycles have been known for a long time and hold an extraordinary potential in diverse research areas ranging from medicinal chemistry to material science. However, the scope of therapeutically important 1‐substituted 4‐acyl‐1H‐1,2,3‐triazoles is much less explored, probably due to the lack of synthetic methodologies of good scope and practicality. Here, we describe a practical and efficient one‐pot multicomponent reaction for the synthesis of α‐ketotriazoles from readily available building blocks such as methyl ketones, N,N‐dimethylformamide dimethyl acetal, and organic azides with 100 % regioselectivity. This reaction is enabled by the in situ formation of an enaminone intermediate followed by its 1,3‐dipolar cycloaddition reaction with an organic azide. We effectively utilized the developed strategy for the derivatization of various heterocycles and natural products, a protocol which is difficult or impossible to realize by other means.  相似文献   

11.
Capillary electrophoresis–electrospray tandem mass spectrometry (CE‐ESI/MS/MS) is a simple and highly sensitive method for quantifying seven urinary androgen glucuronides. The urine samples were diluted and filtered through a membrane filter, and the filtrate was injected into a CE‐MS/MS system without further sample preparation steps such as extraction and derivatization. The calibration ranges were 0.01–5 µg/mL for glucuronides of androsterone and 11β‐OHAn‐3G, and 5–500 ng/mL for glucuronides of 11‐ketoAn, DHEA, testosterone, epitestosterone and DHT. The linearity of the method was 0.992–0.998, and the limits‐of‐detection at a signal‐to‐noise ratio of 3 were 5–10 ng/mL. The coefficients of variation were in the range of 4.0–9.0% for intra‐day assay and 4.1–9.8% for inter‐day assay. The proposed method may be applicable to metabolic profiling in both quantitative and qualitative analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
3-Isoxazolols are most often synthesized from a beta-keto ester and hydroxylamine. This cyclization typically gives rise to a major byproduct, the corresponding 5-isoxazolone. We have found that N, O-diBoc-protected beta-keto hydroxamic acids can be synthesized and cyclized to 5-substituted 3-isoxazolols without formation of any byproduct. We present a novel and versatile three-step procedure in which carboxylic acid derivatives are converted into acyl Meldrum's acids which, upon aminolysis with N, O-bis(tert-butoxycarbonyl)hydroxylamine, lead to the N, O-diBoc-protected beta-keto hydroxamic acids. These hydroxamic acid analogues were then, upon treatment with hydrochloric acid, cyclized to the corresponding 5-substituted 3-isoxazolols.  相似文献   

13.
A liquid chromatography/electrospray ionization–tandem mass spectrometry‐based method was developed for the identification of the conjugation positions of the monoglucuronides of 25‐hydroxyvitamin D3 [25(OH)D3] and 24,25‐dihydroxyvitamin D3 [24,25(OH)2D3] in human urine. The method employed derivatization with 4‐(4‐dimethylaminophenyl)‐1,2,4‐triazoline‐3,5‐dione to convert the glucuronides into fragmentable derivatives, which provided useful product ions for identifying the conjugation positions during the MS/MS. The derivatization also enhanced the assay sensitivity and specificity for urine sample analysis. The positional isomeric monoglucuronides, 25(OH)D3‐3‐ and ‐25‐glucuronides, or 24,25(OH)2D3‐3‐, ‐24‐ and ‐25‐glucuronides, were completely separated from each other under the optimized LC conditions. Using this method, the conjugation positions were successfully determined to be the C3 and C24 positions for the glucuronidated 25(OH)D3 and 24,25(OH)2D3, respectively. The 3‐glucuronide was not present for 24,25(OH)2D3, unlike 25(OH)D3, thus we found that selective glucuronidation occurs at the C24‐hydroxy group for 24,25(OH)2D3.  相似文献   

14.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

15.
For the first time chemical derivatization of isomeric drug glucuronides with 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) has been successfully applied as a tool for determining the site of conjugation. This provides a way to differentiate between glucuronide isomers containing aliphatic and phenolic hydroxyl groups. The analyses were performed with liquid chromatography/electrospray ion trap mass spectrometry (LC/ESI-MSn). DMISC has previously been shown to react selectively with phenols in estrogens, thus improving sensitivity in ESI-MS. The model compounds selected for this study were commercially available standards of formoterol, morphine, morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G). Formoterol glucuronides were produced with an enzymatic method in house. Both formoterol and morphine possess one phenolic and one aliphatic hydroxyl group where glucuronidation could take place. The product ion mass spectra of the native morphine glucuronides were indistinguishable due to the initial neutral loss of monodehydrated glucuronic acid (176 u). However, a significant difference between the isomers was observed with DMISC derivatization, as only the form with a free phenol, M6G, gave a detectable reaction product. Formoterol formed two detectable glucuronide isomers in the enzymatic reaction. Their respective sites of conjugation could not be directly determined from the product ion spectra. Reaction with DMISC, however, gave a detectable product with only one of the isomers. Based on previous experience of the preferred DMISC reactions with phenols, and interpretation of the fragmentation pattern of the derivative, it was concluded that the reactive isomer had a free phenol, and was thus conjugated on the aliphatic chain.  相似文献   

16.
Following in vivo use of mycophenolic acid, the O-aryl and O-acyl glucuronides, as well as the recently discovered O-aryl glucoside (Scheme 1), are all found as metabolites. We describe convenient preparations of all three derivatives. The phenolic glycosides are obtained by phase-transfer-catalysed alkylation of methyl mycophenolate in very high yield, as an excellent alternative to the Königs-Knorr reaction. We carefully optimised our earlier synthesis of the acyl glucuronide to give a highly pure product in a much improved yield. Finally, we describe the value of a synthetic acyl glucuronide in demonstrating its reactivity towards a known target protein with superior response to the naturally obtained material.  相似文献   

17.
Derivatization with 1,2‐dimethylimidazole‐4‐sulfonyl chloride (DMISC) has been successfully used as a tool to differentiate between aromatic and aliphatic O‐glucuronides of hydroxypropranolol. The analyses were performed with liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS) with both a triple quadrupole and an ion trap instrument. Hydroxylated forms of propranolol can be glucuronidated in aliphatic as well as aromatic positions. These isoforms are not distinguishable by tandem MS alone, as they both initially lose 176 Da, i.e. monodehydrated glucuronic acid, giving back the aglycone. Two in vitro systems were set up for the production of propranolol metabolites. The obtained isomers of 4′‐hydroxypropranolol glucuronide were determined to correspond to one aliphatic and one aromatic form, using chemical derivatization with DMISC and LC‐MSn. DMISC was shown to react with the secondary amine in the case where the naphtol was occupied by the glucuronyl moiety, resulting in a different fragmentation pattern compared with that of the aliphatic glucuronide, where the naphtol group was accessible to derivatization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We report the synthesis of the 1-β-O-acyl glucoside conjugates of phenylacetic acid (PAA), R- and S-α-methyl-PAA and α,α'-dimethyl-PAA, and measurement of their transacylation and hydrolysis reactivity by NMR methods. These are analogues of acyl glucuronides, the transacylation kinetics of which could be important in adverse drug effects. One aim of this work was to investigate whether, as previously postulated, the free carboxylate group of the acyl glucuronides plays a part in the mechanism of the internal acyl migration. In addition, such acyl glucosides are known to be endogenous biochemicals in their own right and investigation of their acyl migration propensities is novel. Our previously described selective acylation procedure has proved highly successful for 1-β-O-acyl glucuronide synthesis and when subsequently applied to 6-O-trityl glucose, it gave good yields and excellent anomeric selectivity. Mild acidolysis of the O-trityl intermediates gave the desired acyl glucosides in excellent yield with essentially complete β-selectivity. Measurement of the acyl glucoside transacylation kinetics by (1)H NMR spectroscopy, based simply on the disappearance of the 1-β-isomer in aqueous buffer at pH 7.4, showed marked differences depending on the degree of methyl substitution. Further kinetic modelling of the isomerisation and hydrolysis reactions of the acyl glucosides showed considerable differences in kinetics for the various isomeric reactions. Reactions involving the -CH(2)OH group, presumably via a 6-membered ring ortho-ester intermediate, are facile and the α-glucoside anomers are significantly more reactive than their β-counterparts. By comparison with degradation rates for the corresponding acyl glucuronides, it can be inferred that substitution of the carboxylate by -CH(2)OH in the acyl glucosides has a significant effect on acyl migration for those compounds, especially for rapidly transacylating molecules, and that thus the charged glucuronide carboxylate is a factor in the kinetics.  相似文献   

19.
In this study, an enantioselective analytical method based on microwave‐assisted chiral derivatization coupled with ultra high performance liquid chromatography and tandem mass spectrometry was developed for the determination of bambuterol enantiomers in human plasma. The chiral derivatization reaction was greatly accelerated by microwave irradiation. Under the optimized conditions, both the derivatization time and separation time on column was only 3 min, and the lower limit of quantification was 2.5 pg/mL. The recoveries were in the range of 90.1–93.0% without significant matrix effect. Compared with the conventional heating chiral derivatization, microwave‐assisted chiral derivatization obtained higher chiral derivatization yields with much shorter time due to the effect of microwave irradiation. Furthermore, the racemization during the derivatization reaction was systematically investigated. The results showed the concentration of acetic acid and the reaction time had significant effects on the racemization, which could be well controlled during microwave‐assisted chiral derivatization for the short reaction time. Finally, this novel approach was demonstrated by determining bambuterol in human plasma of a clinical pharmacokinetic study in eight healthy volunteers. On the basis of the results, microwave‐assisted chiral derivatization coupled with ultra high performance liquid chromatography and tandem mass spectrometry as a simple and effective enantioselective analysis technique for the determination of chiral drugs in complex biological samples showed great promise.  相似文献   

20.
Lysine acylation of proteins is an essential chemical reaction for posttranslational modification and as a means of protein modification in various applications. N,N‐Dimethyl‐4‐aminopyridine (DMAP) derivatives are widely‐used catalysts for lysine acylation of proteins; however, the DMAP moiety mostly exists in a protonated, and thus deactivated, form under physiological conditions due to its basicity. An alternative catalytic motif furnishing higher acylation activity would further broaden the possible applications of chemical lysine acylation. We herein report that the hydroxamic acid‐piperidine conjugate Ph‐HXA is a more active catalytic motif for lysine acetylation than DMAP under physiological conditions. In contrast to DMAP, the hydroxamic acid moiety is mostly deprotonated under aqueous neutral pH, resulting in a higher concentration of the activated form. The Ph‐HXA catalyst is also more tolerant of deactivation by a high concentration of glutathione than DMAP. Therefore, Ph‐HXA might be a suitable catalytic motif for target protein‐selective and site‐selective acetylation in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号