首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detection of the reactive metabolites of drugs has recently been gaining increasing importance. In vitro trapping studies using trapping agents such as glutathione are usually conducted for the detection of reactive metabolites, especially those of cytochrome P450‐mediated metabolism. In order to detect the UDP‐glucuronosyltransferase (UGT)‐mediated bioactivation of drugs, an in vitro trapping method using N‐acetylcysteine (NAC) as a trapping agent followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed in this study. After the test compounds (diclofenac and ketoprofen) had been incubated in human liver microsomes with uridine diphosphoglucuronic acid (UDPGA) and NAC, the NAC adducts formed through their acyl glucuronides were analyzed using LC/MS/MS with electrospray ionization (ESI). The NAC adduct showed a mass shift of 145 units as compared to its parent, and the characteristic ion fragmentations reflected the parent. This is a concise and high‐throughput method for evaluating reactive metabolites by UGT‐mediated bioactivation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Multiple ion monitoring (MIM)‐dependent acquisition with a triple quadrupole‐linear ion trap mass spectrometer (Q‐trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM‐EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)‐EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM‐EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4‐ethylphenol in liver microsome incubations. Results showed that the MIM‐EPI‐based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high‐throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The present study describes a new analytical approach for the detection and characterization of chemically reactive metabolites using glutathione ethyl ester (GSH-EE) as the trapping agent in combination with hybrid triple quadrupole linear ion trap mass spectrometry. Polarity switching was applied between a negative precursor ion (PI) survey scan and the positive enhanced product ion (EPI) scan. The negative PI scan step was carried out monitoring the anion at m/z 300, corresponding to deprotonated gamma-glutamyl-dehydroalanyl-glycine ethyl ester originating from the GSH-EE moiety. Samples resulting from incubations in the presence of GSH-EE were cleaned and concentrated by solid-phase extraction, followed by the PI-EPI analysis. Unambiguous identification of GSH-EE-trapped reactive metabolites was greatly facilitated by the unique survey scan of the anion at m/z 300, which achieved less background interference, in particular, from endogenous glutathione adducts present in human liver microsomes. Further structural characterization was achieved by analyzing positive MS(2) spectra that featured rich fragments without mass cutoff and were acquired in the same liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The effectiveness and reliability of this approach was evaluated using a number of model compounds in human liver microsomal incubations, including acetaminophen, amodiaquine, carbamazepine, 4-ethylphenol, imipramine and ticlopidine. In addition, iminoquinone reactive metabolites of mianserin were trapped and characterized for the first time using this method. Compared to neutral loss (NL) scanning assays using GSH as the trapping agent, the results have demonstrated superior selectivity, sensitivity, and reliability of this current approach.  相似文献   

4.
In the present study, a method for the analysis of reactive metabolites via liquid chromatography (LC) with inductively coupled plasma–mass spectrometry (MS) was developed. A ferrocenyl-modified glutathione (GSH) reagent, consisting of GSH and succinimidyl-3-ferrocenylpropionate, was synthesized. Derivatization of the tripeptide was performed at the N-terminus, leaving the nucleophilic thiol group vacant for the attack of electrophilic compounds. The potential of ferrocenylpropionate (FP)-GSH as a trapping agent for reactive metabolites was investigated using an electrochemical flow-through cell for metabolism simulation coupled online to a LC system with electrospray ionization mass spectrometric detection. The pharmaceuticals amodiaquine, an antimalarial agent, and clozapine, an antipsychotic compound, served as model substances. By proving the successful adduct formation between the reactive metabolite and ferrocene-labeled GSH, it could be shown that FP-GSH is an effective trapping agent which eases routine reversed-phase LC analyses. In contrast to GSH, which is usually used for the conjugation of reactive metabolites and where the resulting adducts often show no or only very little retention, FP-GSH facilitates the detection of the corresponding metabolite adducts due to higher retention times.  相似文献   

5.
The metabolites formed via the major metabolic pathways of haloperidol in liver microsomes, N‐dealkylation and ring oxidation to the pyridinium species, were produced by electrochemical oxidation and characterized by ultra‐performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI‐MS). Liver microsomal incubations and electrochemical oxidation in the presence of potassium cyanide (KCN) resulted in two diastereomeric cyano adducts, proposed to be generated from trapping of the endocyclic iminium species of haloperidol. Electrochemical oxidation of haloperidol in the presence of KCN gave a third isomeric cyano adduct, resulting from trapping of the exocyclic iminium species of haloperidol. In the electrochemical experiments, addition of KCN almost completely blocked the formation of the major oxidation products, namely the N‐dealkylated products, the pyridinium species and a putative lactam. This major shift in product formation by electrochemical oxidation was not observed for the liver microsomal incubations where the N‐dealkylation and the pyridinium species were the major metabolites also in the presence of KCN. The previously not observed dihydropyridinium species of haloperidol was detected in the samples, both from electrochemical oxidation and the liver microsomal incubations, in the presence of KCN. The presence of the dihydropyridinium species and the absence of the corresponding cyano adduct lead to the speculation that an unstable cyano adduct was formed, but that cyanide was eliminated to regenerate the stable conjugated system. The formation of the exocyclic cyano adduct in the electrochemical experiments but not in the liver microsomal incubations suggests that the exocyclic iminium intermediate, obligatory in the electrochemically mediated N‐dealkylation, may not be formed in the P450‐catalyzed reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Identification of drug metabolites by liquid chromatography/mass spectrometry (LC/MS) involves metabolite detection in biological matrixes and structural characterization based on product ion spectra. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of metabolites using triple‐quadrupole and ion trap mass spectrometers. Recently, a novel mass defect filter (MDF) technique has been developed, which enables high‐resolution mass spectrometers to be utilized for detecting both predicted and unexpected drug metabolites based on narrow, well‐defined mass defect ranges for these metabolites. This is a new approach that is completely different from, but complementary to, traditional molecular mass‐ or MS/MS fragmentation‐based LC/MS approaches. This article reviews the mass defect patterns of various classes of drug metabolites and the basic principles of the MDF approach. Examples are given on the applications of the MDF technique to the detection of stable and chemically reactive metabolites in vitro and in vivo. Advantages, limitations, and future applications are also discussed on MDF and its combinations with other data mining techniques for the detection and identification of drug metabolites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Fipexide is a nootropic drug, withdrawn from the market due to its idiosyncratic drug reactions causing adverse effects in man. Previous work on its metabolites has identified several potential reactive metabolites which could be implicated in protein binding. Here, we investigated the formation of these metabolites in rat and human hepatocytes. Based on these results, the o-quinone of fipexide (FIP), formed via the demethylenation reaction through a catechol intermediate, was chosen for further investigation. Studies were then pursued in order to relate this metabolite to protein binding, and thus better understand potential mechanisms for the toxicity of the parent compound. An assay was developed for determining the fipexide catechol-cysteine adduct in the microsomal protein fractions following in vitro incubations. This method digests the entire protein fraction into amino acids, followed by the detection of the Cys-metabolite adduct by liquid chromatography/mass spectrometry (LC/MS). We have designed a strategy where drug metabolism taking place in microsomal incubations and involved in protein binding can be assessed after the proteins have been digested, with the detection of the specific amino acid adduct. In this study, the structure of the fipexide adduct was hypothesized using knowledge previously gained in glutathione and N-acetylcysteine trapping experiments. Acetaminophen was used as a positive control for detecting a drug metabolite-cysteine adduct by LC/MS. This approach has the potential to be applicable as a protein-binding assay in early drug discovery without the need for radioactive compounds.  相似文献   

9.
Reactive metabolites are believed to be one of the main reasons for unexpected drug‐induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione‐trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide‐trapped metabolites were found for eight and semicarbazide‐trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Ribociclib is a highly specific CDK4/6 inhibitor. Determination of the metabolism of ribociclib is required during the drug development stage. In this study, metabolic profiles of ribociclib were investigated using rat and human liver microsomes. Metabolites were structurally identified by liquid chromatography electrospray ionization high-resolution mass spectrometry operated in positive-ion mode. The metabolites were characterized by accurate masses, MS2 spectra and retention times. With rat and human liver microsomes, a total of 10 metabolites were detected and further identified. No human-specific metabolites were detected. The metabolic pathways of ribociclib were oxygenation, demethylation and dealkylation. Most importantly, two glutathione (GSH) adducts were identified in human liver microsomes fortified with GSH. The formation of the GSH adducts was hypothesized to be through the oxidation of electron-rich 1,4-benzenediamine to a 1,4-diiminoquinone intermediate, which is highly reactive and can be trapped by GSH to form stable metabolites. The current study provides an overview of the metabolic profiles of ribociclib in vitro, which will be of great help in understanding the efficacy and toxicity of this drug.  相似文献   

11.
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents.  相似文献   

12.
Reactive metabolites are thought to play a pivotal role in the pathogenesis of some drug‐induced liver injury (DILI) and idiosyncratic adverse drug reactions (IADRs), which is of concern to patient safety and has been a cause of drugs being withdrawn from the market place. To identify drugs with a lower propensity for causing DILI and/or IADRs, high‐throughput assays to capture reactive metabolites are required in pharmaceutical industry for early drug discovery risk assessment. We describe the development of an assay to detect glutathione adducts with combined high sensitivity, enhanced specificity, and rapid data analysis. In this assay, compounds were incubated with human liver microsomes and a mixture of 1:1 of GSH (γ‐GluCysGly): GSX(γ‐GluCysGly‐13C215N) in a 96‐well plate format. UPLC‐UV and LTQ Orbitrap XL were employed to detect GSH‐adducts using the following mass spectrometry setups: (a) selected ion monitoring (SIM) at m/z of 274 ± 3 Da in negative mode with in‐source fragmentation (SCID), which enables simultaneously monitoring two characteristic product ions of m/z 272.0888 (γ‐glutamyl‐dehydroalanyl‐glycine) and 275.0926 (γ‐glutamyl‐dehydroalanyl‐glycine‐13C215N); (b) full scan mode for acquisition of exact mass of glutathione adducts; (c) data‐dependent MS2 scan through isotopic matching (M:M + 3.00375 = 1:1) for monitoring neutral loss fragments (144 Da from dehydroalanyl‐glycine) and for structural information of glutathione adducts. This approach was qualified using eight compounds known to form GSH conjugates as reported in the literature. The high sensitivity and specificity were demonstrated in identifying unique CysGly adducts in the case of clozapine, diclofenac, and raloxifene and in identifying GSH‐adducts of fragmented parent molecules in the case of amodiaquine and troglitazone. In addition, LC‐UV chromatograms in the presence or absence of GSH/GSX allowed for identification of the rearranged glutathione adducts without aforementioned characteristic fragment ions. Implement of this assay in drug discovery small molecule programs has successfully guided drug design.  相似文献   

13.
Therapeutic efficiency and hemolytic toxicity of primaquine (PQ), the only drug available for radical cure of relapsing vivax malaria are believed to be mediated by its metabolites. However, identification of these metabolites has remained a major challenge apparently due to low quantities and their reactive nature. Drug candidates labeled with stable isotopes afford convenient tools for tracking drug‐derived metabolites in complex matrices by liquid chromatography‐tandem mass spectrometry (LC‐MS‐MS) and filtering for masses with twin peaks attributable to the label. This study was undertaken to identify metabolites of PQ from an in vitro incubation of a 1:1 w/w mixture of 13C6‐PQ/PQ with primary human hepatocytes. Acquity ultra‐performance LC (UHPLC) was integrated with QTOF‐MS to combine the efficiency of separation with high sensitivity, selectivity of detection and accurate mass determination. UHPLC retention time, twin mass peaks with difference of 6 (originating from 13C6‐PQ/PQ), and MS‐MS fragmentation pattern were used for phenotyping. Besides carboxy‐PQ (cPQ), formed by oxidative deamination of PQ to an aldehyde and subsequent oxidation, several other metabolites were identified: including PQ alcohol, predictably generated by oxidative deamination of PQ to an aldehyde and subsequent reduction, its acetate and the alcohol's glucuronide conjugate. Trace amounts of quinone‐imine metabolites of PQ and cPQ were also detected which may be generated by hydroxylation of the PQ/cPQ quinoline ring at the 5‐position and subsequent oxidation. These findings shed additional light on the human hepatic metabolism of PQ, and the method can be applied for identification of reactive PQ metabolites generated in vivo in preclinical and clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Houttuynin, a β‐keto aldehyde compound, is the major active ingredient in herba houttuyniae injection. The injection was once used as an anti‐inflammatory drug associated with occasional serious hypersensitivity reactions in the clinic, which were proposed to be related to the formation of protein adducts. Nα‐Boc‐lysine, FEEM and IVTNTT were used as model amino acids or peptides containing one nucleophilic residue to investigate adduct types by liquid chromatography coupled with ion trap mass spectrometry (LC/MSn) and high‐resolution quadrupole time‐of‐flight mass spectrometry (Q‐TOF MS). These adducts were respectively characterized as Schiff bases formed by 1:1 reaction of houttuynin with lysine or N‐terminal residue and pyridinium adducts by 2:1 reaction. LC/MSn analysis of trypsin digests of HSA/Hb incubations with houttuynin revealed that houttuynin‐modified HSA adducts were formed mainly at N‐terminal amino acid and lysine residues, specifically at Lys‐212, Lys‐414 and Lys‐525 for Schiff base adducts, and at Lys‐414 and Lys‐432 for pyridinium adducts, and houttuynin adducted more readily with N‐terminal valine of the α‐ and β‐chains in Hb and lysine amine (Lys‐62) of the β‐chain for Schiff base adducts. The results showed the direct modification of houttuynin to HSA/Hb in vitro, which was speculated to be responsible for the adverse reactions induced by houttuyniae injection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The formation of reactive metabolites from a number of compounds was studied in vitro using a mixture of non-labeled and stable isotope labeled glutathione (GSH) as a trapping agent. GSH was labeled by incorporating [1,2-(13)C(2),(15)N]glycine into the tripeptide to give an overall increase of 3 Da over the naturally occurring substance. Detection and characterization of reactive metabolites was greatly facilitated by using the data-dependent scanning features of the linear ion trap mass spectrometers to give complimentary and confirmatory data in a single analytical run. A comparison was made by analyzing the samples simultaneously on a triple-stage quadrupole mass spectrometer operated in the constant neutral loss mode. The compounds studied included 2-acetamidophenol, 3-acetamidophenol, 4-acetamidophenol (acetaminophen), and flufenamic acid. GSH adducts for each of these compounds produced a characteristic pattern of 'twin ions' separated by 3 Da in the mass spectral data. This greatly facilitated the detection and characterization of any GSH-related adducts present in the microsomal extracts. Furthermore, characterization of these adducts was greatly facilitated by the rapid scanning capability of linear ion trap instruments that provided full-scan, MS/MS and MS(3) data in one single analysis. This method of detecting and characterizing reactive metabolites generated in vitro was found to be far superior to any of the existing methods previously employed in this laboratory. The combination of two techniques, stable isotope labeled glutathione and linear ion traps, provided a very sensitive and specific method of identifying compounds capable of producing reactive metabolites in a discovery setting. The complimentary set of mass spectral data (including full-scan, MS/MS and MS(3) mass spectra), obtained rapidly in a single analysis with the linear ion trap instruments, greatly accelerated identification of metabolically bioactivated soft spots on the molecules. This in turn enabled chemists to rapidly design out the potential metabolic liability from the back-up compounds by making appropriate structural modifications.  相似文献   

16.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The application of sulphur-specific detection via ultra-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (UPLC/ICPMS) to detect and quantify the glutathione (GSH)-adducts produced via the in vitro formation of reactive metabolites is demonstrated. The adducts were formed in human liver microsomes supplemented with unlabelled GSH for clozapine. The calculation of adduct concentration was performed via comparison of the peak areas to calibration curves constructed from omeprazole, a sulphur-containing compound over the range of 0.156 to 15.62 μM of sulphur with a detection limit of 1.02 ng of sulphur on-column. Identification of the adducts was performed using conventional UPLC/time-of-flight (TOF)-MS with the calculation of clozapine intrinsic clearance carried out by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). The use of ICPMS in this way appears to offer a novel, rapid and sensitive means of determining the quantity of GSH conjugates with the combined adducts producing 0.9 μM of reactive metabolite out of a total of 3.5 μM of metabolites. The GSH adduct therefore represents 26% of this total produced as a result of the metabolism of drug to reactive species.  相似文献   

18.
A liquid chromatography tandem mass spectrometry (LC/MS/MS) method has been developed for the fast routine analysis of selected CYP450 probe substrate metabolites in microsomal incubations, with no sample pretreatment. This has allowed fast and simple assessment of the potential effects which drug candidates may or may not have on the metabolism of specific CYP450 probe substrates, providing information which can then be used to rationalize in vivo interaction studies required in the clinic. This methodology takes advantage of fast gradient chromatography as a generic means of sample separation and analysis. It provides high throughput analysis compared to conventional gradient HPLC, with no significant loss in chromatographic performance. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software‐based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH‐modified DNA samples were obtained by reaction of the anti‐dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2′‐deoxynucleosides. Positive LC/electrospray ionisation (ESI)‐MS/MS collision‐induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2′‐deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2′‐deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH‐adducted 2′‐deoxynucleosides was achieved using online column‐switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H–116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H–116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号