首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel dibromo compound containing unsymmetrical substituted bi‐triarylamine was synthesized. A conjugated polymer was prepared via the Suzuki coupling from the newly prepared dibromo compound and 9,9‐dioctylfluorene‐2,7‐bis(trimethyleneboronate). The glass transition temperature (Tg) of the conjugated polymer was 140 °C, 10% weight‐loss temperatures (Td10) in nitrogen was 458 °C, and char yield at 800 °C in nitrogen higher than 64%. Cyclic voltammogram of the polymer film cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.70 and 1.10 V versus Ag/Ag+ in acetonitrile solution. The polymer films revealed excellent stability of electrochromic characteristics, with a color change from yellow green of the neutral form to the dark green and blue of oxidized forms at applied potentials ranging from 0 to 1.3 V. The color switching time and bleaching time were 4.25 and 7.22 s for 860 nm and 5.51 s and 6.48 s for 560 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1469–1476, 2010  相似文献   

2.
1‐{3,4‐Di‐(2‐hydroxyethoxy)phenyl}‐2‐(2‐thiophenyl)ethene (5) was prepared and condensed with terephthaloyl chloride to yield polyester (6). Polymer 6 was reacted with tetracyanoethylene to give a new Y‐type polyester (7) containing 1‐(3,4‐dioxyethoxy)phenyl‐2‐{5‐(2,2,3‐tricyanovinyl)‐2‐thiophenyl)}ethenyl groups as NLO‐chromophores, which are components of the polymer backbones. Polyester 7 is soluble in common organic solvents such as N,N‐dimethylformamide and acetone. Polymer 7 showed a thermal stability up to 300 °C in thermogravimetric analysis with glass transition temperature (Tg) obtained from differential scanning calorimetry near 126 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at the 1560 nm fundamental wavelength was around 6.57 × 10?9 esu. The dipole alignment exhibited high thermal stability up to the Tg, and there was no SHG decay below 125 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1911–1919, 2009  相似文献   

3.
A novel Y‐type poly[iminocarbonyloxyethyl‐5‐methyl‐4‐{2‐thiazolylazo‐4‐(1,2,2‐tricyanovinyl)}resorcinoxyethyloxycarbonylimino‐(3,3′‐dimethoxy‐4,4′‐biphenylene)] 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute part of the polymer backbone, was prepared and characterized. Polyurethane 4 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It showed a thermal stability up to 250 °C in thermogravimetric analysis thermogram and the glass‐transition temperature (Tg) obtained from differential scanning calorimetry thermogram was around 118 °C. The second harmonic generation coefficient (d33) of poled polymer films at 1560 nm fundamental wavelength was around 8.43 × 10?9 esu. The dipole alignment exhibited a thermal stability even at 12 °C higher than Tg, and there was no SHG decay below 130 °C due to the partial main‐chain character of the polymer structure, which is acceptable for NLO device applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1166–1172, 2010  相似文献   

4.
Four polythiophene derivatives including regiorandom polymers P1 , P2 , and P3 and a regioregular polymer P4 , containing a phenyl side chain with electron‐withdrawing carbonyl groups such as an ester and a ketone at the 3‐position of the thiophene ring, were synthesized by Stille coupling reaction. Bulk‐heterojunction polymer solar cells (PSCs) based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) were fabricated, and their photovoltaic performances were evaluated for the first time. The PSC devices based on the regioregular polymer P4 :PCBM = 1:2 (w/w) exhibited a high‐open‐circuit voltage (Voc) of 0.943 V because of the low‐lying highest occupied molecular orbit energy level of P4 . The short π–π stacking distance (0.355 nm) in the parallel direction to the substrate and “face‐on” rich orientation were observed by the grazing incidence wide‐angle X‐ray scattering experiment, which might reflect higher Jsc and FF values of the P4 :[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) PSC device than others. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 875–887  相似文献   

5.
A new conjugated polymer PBDTT‐ID based on N‐alkylated isoindigo (ID) and bis(2,3‐dialkylthienyl)‐substituted benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) as repeating units was synthesized. It had an optical bandgap of 1.56 eV and a highest occupied molecular orbital (HOMO) energy level of ?5.71 eV. The optical, electrochemical, and photovoltaic properties of new polymer were compared with previous reported polymer PBDT‐ID , which was based on bis(alkoxy)‐substituted benzo[1,2‐b:4,5‐b′]dithiophene. The new polymer displayed lower HOMO energy level and better absorption properties than polymer PBDT‐ID . The solar cells fabricated with PBDTT‐ID /PC61BM (1:2, w/w) blends as active layers exhibited photoresponse in the range of 300–800 nm. A power conversion efficiency of 4.02% and an open circuit voltage (Voc) of 0.94 V were achieved in polymer solar cell device based on the new polymer. This was the highest Voc realized among the isoindigo‐based polymers. The relatively high performances of new polymer in solar cell devices were interpreted in terms of material properties and morphologies of polymer/PCBM blends. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Novel X‐type polyurethane 5 containing 4‐(2′,2′‐dicyanovinyl)‐6‐nitroresorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone, was prepared and characterized. Polyurethane 5 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It shows thermal stability up to 280 °C from thermogravimetric analysis with a glass transition temperature (Tg) obtained from differential scanning calorimetry thermogram of around 120 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1064‐nm fundamental wavelength is around 6.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 5 °C higher than Tg, and there was no SHG decay below 125 °C due to the partial main chain character of the polymer structure, which is acceptable for NLO device applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
The synthesis and characterization of two low band gap copolymers ( P1 and P2 ) incorporating benzo[1,2‐b:4,5‐b']dithiophene unit substituted with octylsulfanylthienyl groups (OSBT) are here reported. These materials, designed to be employed in polymer solar cells (PSCs), were obtained from alternating OSBT and bithiophene ( P1 ) or thienothiophene ( P2 ) units. Their structural electrochemical and photophysical properties were investigated. They are thermally stable and soluble in organic solvents from which they easily form films. They also form π‐stacks in solution, in film and display a moderate solvatochromism. These polymers were tested with [70]PCBM in bulk‐heterojunction (BHJ) PSCs where they act as donor materials and [70]PCBM is the electron acceptor. The best device, obtained using a 1:3 weight ratio for the P1 :[70]PCBM blend, shows a PCE around 1.5%. A broad response from 350 to 700 nm is also observed in the external quantum efficiency (EQE) curves, wider for P1 with respect to P2 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1603–1614  相似文献   

8.
A novel hybrid‐type chiral binaphthyl‐based polyarylene derivative with polyhedral oligomeric silsesquioxanes (POSS) units 2a was prepared by Suzuki–Miyaura coupling polymerization from a chiral (R)‐6,6′‐dibromo‐2,2′‐diPOSS‐substituted 1,1′‐binaphthyl derivative 1a and p‐biphenylene diboronic acid. As a reference, a binaphthyl‐based polyarylene derivative without POSS unit 2b was also prepared. The obtained polymers were studied with thermogravimetric analysis, optical rotations, circular dichroism (CD), ultraviolet‐visible, and photoluminescence (PL) spectra. Gel permeation chromatography measurements of 2a and 2b showed that their number‐average molecular weights were 13,300 and 16,500, respectively. The thermal stability of POSS‐modified polymer 2a (temperature of 10% weight loss; T10 = 380 °C) was extremely high compared with that of polymer without POSS unit 2b (T10 = 335 °C) due to the siliceous bulky POSS segments on the side chains. The specific optical rotation [α]D was ?66.7° (c 0.06, CHCl3) for 2a and ?62.3° (c 0.06, CHCl3) for 2b . The CD spectra showed that these two polymers had very similar and strong Cotton effects. Film polymer 2a showed almost the same PL spectrum as that in dilute CHCl3 solution, indicating that bulky POSS units strongly suppressed intermolecular aggregation of the π‐conjugated polymer backbone. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6035–6040, 2008  相似文献   

9.
An alternating donor‐acceptor copolymer based on a benzotriazole and benzodithiophene was synthesized and selenophene was incorporated as π‐bridge. The photovoltaic and optical properties of polymer were studied. The copolymer showed medium band gap and dual absorption peaks in UV‐Vis absorption spectra. Photovoltaic properties of P‐SBTBDT were performed by conventional device structure. The OSC device based on polymer: PC71BM (1:1, w/w) exhibited the best PCE of 3.60% with a Voc of 0.67 V, a Jsc of 8.95 mA/cm2, and a FF of 60%. This finding was supported with morphological data and space charge limited current (SCLC) mobilities. The hole mobility of the copolymer was estimated through SCLC model. Although surface roughness of the active layer is really high, mobility of a polymer was found as 7.46 × 10?3 cm2/Vs for optimized device that can be attributed to Se?Se interactions due to the larger, more‐polarizable Se atom. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 528–535  相似文献   

10.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Two series of polyimides based on laterally attached p‐terphenyl and biphenyl groups were synthesized. The solubility and thermal properties were studied using DSC, thermogravimetric analysis, and the solubility test. These polymers exhibited good thermal stability and excellent solubility. The high solubility for both polymer series was attributed to the non‐coplanarity of diamine monomers and the use of fluorinated dianhydride, whereas the slightly better solubility for polymers based on p‐terphenyl was attributed to further weakening of interchain interaction of the polymers. Both polymer series exhibited glass‐transition temperatures (Tg's) in the range of 244–272 °C. The Tg's of polymers containing laterally attached p‐terphenyls were higher than those of their counterparts containing biphenyls by 5–17 °C. This was attributed to the formation of an interdigitated structure that hinders the segmental movement of polymer chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2998–3007, 2001  相似文献   

12.
A novel phosphorus-containing bismaleimide, 3,3′-bis(maleimidophenyl)phenylphosphine oxide (BMPPPO), was synthesized from triphenylphosphine oxide. This bismaleimide exhibited good solubility in common organic solvents, such as methylethylketone, methylisobutylketone, dichloromethane, chloroform, tetrahydrofuran, acetone, methanol, ethanol, and hot toluene. A low melting point (Tm = 148 °C), a relatively low polymerization temperature (Tp = 214 °C), and a wide processing window (TpTm = 66 °C) were also obtained for BMPPPO. This implies better processing capability. In contrast to most known phosphorus-containing polymers, the incorporation of BMPPPO into poly(bismaleimide) enhanced the polymer glass-transition temperature. Thermal stability at temperatures over 550 °C and char yields in the high-temperature region over 700 °C were also improved. As a result, the flame-retardant properties of the poly(bismaleimide)s were improved. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1716–1725, 2001  相似文献   

13.
Novel Y‐type polyester 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which are parts of the polymer backbone, was prepared, and its NLO properties were investigated. Polyester 4 is soluble in common organic solvents such as N,N‐dimethylformamide and dimethylsulfoxide. Polymer 4 shows a thermal stability up to 250 °C from thermogravimetric analysis with glass‐transition temperature obtained from differential scanning calorimetry of approximately 94 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1560‐nm fundamental wavelength is 8.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 6 °C higher than glass‐transition temperature (Tg), and no significant SHG decay is observed below 100 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A new benzodithiophene (BDT)‐based polymer, poly(4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene vinylene) (PBDTV), was synthesized by Pd‐catalyzed Stille‐coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 × 10?3 cm2/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with Voc = 0.71 V, Isc = 6.46 mA/cm2, and FF = 0.57 under the illumination of AM1.5, 100 mW/cm2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1822–1829, 2010  相似文献   

15.
To obtain a melt‐processable thermosetting polyimide having a high glass‐transition temperature (Tg) and good solvent resistance, the effect of introducing a crosslinkable agent into the polymer chain ends of the melt‐processable polyimide on its physical properties was studied. The polyimide (calculated number‐average molecular weight (Mn) = 11,600 g/mol) capped with the crosslinkable agent exhibited poor melt flowability because its crosslinkable agent reacted at the processing temperature of 360 °C. To reduce the rate of crosslink reaction, two methods were investigated. One was lowering the processing temperature, and the other was decreasing the amount of crosslinkable agent. The low‐molecular‐weight oligomer (calculated Mn = 6300 g/mol) capped with the crosslinkable agent exhibited good melt flowability at the lower processing temperature of 340 °C where the crosslinkable agent did not react. However, the obtained molded part of this oligomer was too brittle to maintain its shape. However, the polyimide (calculated Mn = 11,600 g/mol) partially capped with the crosslinkable agent demonstrated good melt flowability at the processing temperature of 360 °C. Furthermore, the molded part of this resin was strong and tough. In addition, the cured part exhibited high Tg and good solvent resistance. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2395–2404, 2004  相似文献   

16.
We synthesized two new alternating polymers, namely P(Tt‐FQx) and P(Tt‐DFQx) , incorporating electron rich tri‐thiophene and electron deficient 6‐fluoroquinoxaline or 6,7‐difluoroquinoxaline derivatives. Both polymers P(Tt‐FQx) and P(Tt‐DFQx) exhibited high thermal stabilities and the estimated 5% weight loss temperatures are 425 and 460 °C, respectively. Polymers P(Tt‐FQx) and P(Tt‐DFQx) displayed intense absorption band between 450 and 700 nm with an optical band gap (Eg) of 1.78 and 1.80 eV, respectively. The determined highest occupied/lowest unoccupied molecular orbital's (HOMO/LUMO) of P(Tt‐DFQx) (?5.48 eV/?3.68 eV) are slightly deeper than those of P(Tt‐FQx) ( ?5.32 eV/?3.54 eV). The polymer solar cells fabricated with a device structure of ITO/PEDOT:PSS/ P(Tt‐FQx) or P(Tt‐DFQx) :PC70BM (1:1.5 wt %) + 3 vol % DIO/Al offered a maximum power conversion efficiency (PCE) of 3.65% with an open‐circuit voltage (Voc) of 0.59 V, a short‐circuit current (Jsc) of 10.65 mA/cm2 and fill factor (FF) of 59% for P(Tt‐FQx) ‐based device and a PCE of 4.36% with an Voc of 0.69 V, a Jsc of 9.92 mA/cm2, and FF of 63% for P(Tt‐DFQx) ‐based device. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 545–552  相似文献   

17.
Internal plasticization of polyvinyl chloride (PVC) using thermal azide‐alkyne Huisgen dipolar cycloaddition between azidized PVC and electron‐poor acetylenediamides incorporating a branched glutamic acid linker resulted in incorporation of four plasticizing moieties per attachment point on the polymer chain. A systematic study incorporating either alkyl or polyethylene glycol esters provided materials with varying degrees of plasticization, with depressed Tg values ranging from ?1 °C to 62 °C. Three interesting trends were observed. First, Tg values of PVC bearing various internal plasticizers were shown to decrease with increasing chain length of the plasticizing ester. Second, branched internal plasticizers bearing triethylene glycol chains had lower Tg values compared to those with similar length long‐chain alkyl groups. Finally, thermogravimetric analysis of these internally plasticized PVC samples revealed that these branched internal plasticizers bearing alkyl chains are more thermally stable than similarity branched plasticizers bearing triethylene glycol units. These internal tetra‐plasticizers were synthesized and attached to PVC‐azide in three simple synthetic steps. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1821–1835  相似文献   

18.
Novel fully renewable AA‐BB type nonisocyanate polyurethanes (NIPUs) were synthesized using the transurethanization approach. Dicarbamate monomers were prepared by the reaction of a diamine with an excess of dimethylcarbonate (DMC), in presence of 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) as catalyst. Then, the dicarbamate was reacted with a diol to afford the polymer, in presence of TBD or K2CO3 as catalyst. Several renewable diamines and diols were tested. The two steps were conducted under neat conditions. The obtained materials exhibited Tg values varying from ?38 to 42 ° C, Tm values varying from 42 to 204 °C , and thermal stabilities above 200 ° C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1351–1359  相似文献   

19.
In this study, soluble, n‐dopable, florescent, electrochromic polypyrrole derivative was synthesized through both chemical and electrochemical polymerization of 2‐[6‐(1H‐pyrrol‐1‐yl)hexyl]‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione (PyNI). The polymer synthesized through chemical polymerization had PL emission maxima at 471 and 543 nm and exhibited two redox couples at E1/2,p = ?1.48 V and E1/2,p = 1.12 V due to n‐type and p‐type doping, respectively. Electrochromic properties of electrochemically synthesized poly(PyNI) (PPyNI) were investigated via spectroelectrochemistry, kinetic studies, coloration efficiency, and colorimetry measurements. The optical band gap of PPyNI was calculated as 2.99 and 2.37 eV. Spectroelectrochemistry analysis of PPyNI reflected electronic transitions at 330–418 nm and 704 nm due to π–π* transition and charge carrier band formation, respectively. The polymer exhibited a switching time of 1.63 s and an optical contrast of 33.37%. Furthermore, dual‐type, complementary‐colored polymer electrochromic device in ITO/PPyNI/PEDOT/ITO configuration was assembled and characterized. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Fluorescent hyperbranched copolymers (HB‐x, x = 1–4) with inherent tetraphenylthiophene, triphenylamine (TPA) and quinoline (Qu) moieties were prepared to study the influence of the TPA branching point on the thermal and the spectral stability. All the HB‐x copolymers exhibited high glass transition temperatures (Tgs = 245–315 °C) with the detected values increasing with the increasing branching TPA content in the HB‐x. The solid HB‐x films possess high emission efficiency with the resulting quantum yields (?Fs) in the ranges of 0.72–0.74. More importantly, the HB‐x copolymers and the derived light‐emitting devices exhibit high photoluminescence (PL) and electroluminescence (EL) stability towards thermal annealing at temperatures higher than 200 °C. After annealing at 200 °C (or 300 °C), no change was observed in the respective PL and EL spectra of HB‐1 (or HB‐4) copolymers. The spectral stability was found to correlate with Tg and with the highest branching density, HB‐4 copolymer possesses the highest thermal stability among all HB‐xs and show no EL spectral change after annealing at 300 °C for 4 h. The results indicate that all the branched HB‐x copolymers are promising candidates for the polymer light‐emitting diodes due to their high quantum yield and spectral stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号