首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, several asymmetric poly(L‐lactide)/poly(D‐lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA with different structures into linear PLLA matrix. The effect of PDLA on rheological behavior, crystallization behavior, nucleation efficiency and spherulite growth of PLLA was investigated. Rheological results indicated that PLLA/PDLA blends showed solid‐like viscoelastic behavior at low temperature (<200°C), and the cross‐linking density of PLLA/PDLA melt at 180°C followed the order: PLLA/6PDLA > PLLA/L‐PDLA > PLLA/3PDLA > PLLA/4PDLA. No‐isotherm and isotherm crystallization results indicated that the crystallization capacity of PLLA/PDLA blends was strongly related to the PDLA structure, crystallization temperature and thermal treatment temperature. Furthermore, the dimension of crystal growth during isotherm crystallization presented the obvious dependent on the PDLA structure. The nucleation efficiency of sc‐crystallites in the blends and spherulite density during isothermal crystallization were also studied. Nucleation efficiency of sc‐crystallites in the PLLA/S‐PDLA blends showed the obvious dependent on thermal treatment temperature with respect to PLLA/L‐PDLA, and nucleation efficiency sc‐crystallites in the PLLA/S‐PDLA blends first decreased and then increased as the thermal treatment temperature increased. Spherulite density of PLLA/PDLA blends was also related to thermal treatment temperature and the PDLA structure. This study has discussed the temperature dependence of the stereocomplex networks between PLLA and PDLA with different structure, and then its consequential influence on rheology and crystallization capacity of PLLA, which would provide the theoretical direction for PLA processing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The blends of poly(1,3‐trimethylene carbonate‐b‐(l ‐lactide‐ran‐glycolide)) (PTLG) with poly(d ‐lactide) (PDLA) were prepared via solution‐casting method using CH2Cl2 as solvent. The poly(l ‐lactide) (PLLA) segments of PTLG with PDLA chain constructed as stereocomplex structures and growth stereocomplex crystals of PLA (sc‐PLA). The effects of sc‐PLA crystals on thermal behavior, mechanical properties, thermal decomposition of the PTLG/PDLA blends were investigated, respectively. The differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results showed that the total crystallinity of the PTLG/PDLA blends was increased with the PDLA content increasing. Heterogeneous nucleation of sc‐PLA crystals induced crystallization of the PLLA segments in PTLG. The crystallization temperature of samples shifted to 107.5°C for the PTLG/PDLA‐20 blends compared with that of the PTLG matrix, and decreased the half‐time of crystallization. The mechanical measurement results indicated that the tensile strength of the PTLG/PDLA blends was improved from 21.1 MPa of the PTLG matrix to 39.5 MPa of PTLG/PDLA‐20 blends. The results of kinetics of thermal decomposition of the PTLG/PDLA blends by TGA showed that the apparent activation energy of the PTLG/PDLA blends was increased from 59.1 to 72.1 kJ/mol with the increasing of the PDLA content from 3 wt% to 20 wt%, which indicated the enhancement of thermal stability of the PTLG/PDLA blends by addition of PDLA. Furthermore, the biocompatibility of the PTLG/PDLA blends cultured with human adipose‐derived stem cells was evaluated by CCK‐8 and live/dead staining. The experiment results proved the PTLG/PDLA blends were a kind of biomaterial with excellent physical performances with very low cytotoxicity.  相似文献   

3.
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006  相似文献   

4.
《先进技术聚合物》2018,29(1):41-51
An innovative eccentric rotor extruder, which can generate continuous elongation flow, was used to fabricate the poly(L‐lactide) (PLLA)/organo‐modified montmorillonite (OMMT) nanocomposites in different OMMT concentrations. The morphology of the nanocomposites was characterized by thermal gravimetric analyzer, X‐ray diffractometer, and transmission electron microscope. The results showed that the OMMT nanoparticles were uniformly dispersed in the PLLA matrix and mainly existed in intercalation mode. The intercalation and exfoliation process of OMMT in the eccentric rotor extruder may be a double‐side exfoliation, which is more effective than the layer‐by‐layer peeling mechanism based on the shear flow. The influence of OMMT on the rheological behavior of PLLA was investigated by dynamic rheological measurements, showing greater improvement of rheological properties for the nanocomposites. The thermo‐mechanical properties analysis indicated that significant enhancement of E′ can be seen for all the nanocomposites. Presence of intercalated OMMT platelets did not lead to a significant shift of the E″ and tan δ curves compared with that of pure PLLA. The crystallization and melting behavior was studied by differential scanning calorimetry, which indicated that the incorporation of OMMT nanoparticles slightly increased the crystallinity of PLLA matrix. The polarizing microscope was further carried out and showed that the dispersed OMMT nanoparticles acted as a heterogeneous nucleating agent to promote the crystallization of PLLA.  相似文献   

5.
Poly(L ‐lactide) (PLLA)/multiwall carbon nanotube (MWNT) composites were prepared by the solvent‐ultrasonic‐casting method. Only very low concentrations of MWNTs (<0.08 wt %) were added in the composites. Isothermal and nonisothermal crystalline measurements were carried out on PLLA/MWNT composites to investigate the effect of MWNTs on PLLA crystalline behavior. DSC results showed that the incorporation of MWNTs significantly shortened the crystalline induction time and increased the final crystallinity of the composite, which indicated MWNTs have a strong nucleation effect on PLLA even at very low concentrations. The nonisothermal crystallization measurements showed that the MWNTs greatly speed up crystallization during cooling. From isothermal crystallization results, both PLLA and PLLA/MWNT composites samples closely followed a relationship based on Lauritzen‐Hoffman theory, with the regime II to III transition shifting to lower temperature with increasing MWNT concentration. A double melting peak appeared in both nonisothermal and isothermal measurements. The conditions under which it appeared were found to closely depend on the regime II‐III transition temperature obtained from Lauritzen‐Hoffman theory. From the magnitude and position of melting peaks, it is proposed that the double melting peak is caused by a disorder‐order crystal phase transition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2341–2352, 2009  相似文献   

6.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

7.
In the present work, the crystalline structures and the melting behaviors of poly(L ‐lactide) (PLLA) obtained after being annealed at different conditions have been investigated through differential scanning calorimetry and wide‐angle X‐ray diffraction, respectively. To improve the crystallization of PLLA, functionalized multiwalled carbon nanotubes (f‐MWCNTs) are introduced into PLLA. Our results show that by prolonging the annealing duration or enhancing the annealing temperature, the degree of crystallinity of PLLA gradually increases. Very important, the addition of f‐MWCNTs promotes the cold‐crystallization of PLLA dramatically even at relatively lower annealing temperature or in shorter annealing duration. Further results show that, whether in neat PLLA or in PLLA/f‐MWCNTs nanocomposite, only α form crystal forms during the annealing process. The glass transition temperature shifts to high temperatures because of the increase of crystallinity. F‐MWCNTs exhibit great heterogeneous nucleation effect for PLLA crystallization through enhancing the nucleation density, leading to homogeneous and tiny spherulites formation in a very short time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 326–339, 2009  相似文献   

8.
Poly(L ‐lactide) (PLLA) on poly(2‐hydroxyethyl methacrylate) (PHEMA) backbone was prepared by a combination of atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP). The structure of the comb polymer was analyzed by wide angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS), and differential scanning calorimetry (DSC). WAXD result indicates that the comb polymer has α crystalline modification with a 103 helical conformation. Lamellar parameters of the crystalline structure were obtained by one‐dimension correlation function (1DCF) calculated from SAXS results. The calculations show that the thickness of crystalline layer is controlled by annealing temperature and comb structure. DSC was applied to study kinetics of the crystallization and melting behavior. Two melting peaks on melting curves of the comb polymer at different crystallization temperature were detected, and the peak at higher temperature is attributed to the melt‐recrystallization. The equilibrium melting temperature is found to be influenced by the comb structure. In this article the effects of the comb structure on Avrami exponent, equilibrium melting point and melting peak of the comb polymer were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 589–598, 2008  相似文献   

9.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

10.
The quiescent crystallization of several polypropylenes (PPs) was examined using Differential Scanning Calorimetry (DSC) and Polarized Optical Microscopy (POM). The half‐times of crystallization were obtained from the DSC thermographs employing the Avrami/Nakamura equation to fit and predict crystallization kinetics under isothermal and nonisothermal conditions. The induction times under nonisothermal conditions were estimated from isothermal crystallization data and used in conjunction with the Nakamura model in order to capture the crystallization behavior of the studied PPs. The Avrami/Nakamura model is found to fit and predict the nonisothermal crystallization data of the various PPs well over a range of cooling rates supporting its use in the simulation of polymer processes of industrial relevance. POM was used in line with parallel plate rheometry (Anton Paar, MCR 502) under no flow conditions to study the shape and growth rate of crystals of various PP resins at different temperatures or cooling rates. The growth rate of crystals is impeded exponentially with increase of temperature. The various PP resins of different molecular architecture have shown different nucleation and growth rate characteristics behavior under similar processing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1259–1275  相似文献   

11.
An investigation of the cooperative effects of plasticizer (PEG) and nucleation agent (TMC‐306) on stereocomplex‐type poly(lactide acid) formation and crystallization behaviors between poly(L‐lactide acid) (PLLA) and poly(D‐lactide acid) (PDLA) was conducted. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) analysis indicated that exclusive stereocomplex‐type poly(lactide acid) (sc‐PLA) crystallites without any homocrystallites poly(lactide acid) (hc‐PLA) did form by incorporation of PEG, TMC‐306, or both at a processing temperature higher than the melting temperature of sc‐PLA (around 230°C). The non‐isothermal and isothermal crystallization kinetics showed that PEG and TMC‐306 could independently accelerate the crystallization rate of sc‐PLA. The crystallization peak temperature and crystallization rate of sc‐PLA were significantly improved by the presence of PEG and TMC‐306. The influence of PEG and TMC‐306 on the morphologies of sc‐PLA was also investigated using polarized optical microscopy (POM). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

13.
To obtain an effective compatibilizer for the blends of poly(L‐lactide) (PLLA) and poly(ε‐caprolactone) (PCL), the diblock copolymers PCL‐b‐PLLA with different ratios of PCL/PLLA (CL/LA) and different molecular weights (Mn) were synthesized by ring‐opening polymerization (ROP) of L‐lactide with monohydric poly(ε‐caprolactone) (PCL‐OH) as a macro‐initiator. These copolymers were melt blended with PLLA/PCL (80/20) blend at contents between 3.0 and 20 phr (parts per hundred resin), and the effects of added PCL‐b‐PLLA on the mechanical, morphological, rheological, and thermodynamic properties of the PLLA/PCL/PCL‐b‐PLLA blends were investigated. The compatibility between PLLA matrix and PCL phase was enhanced with decreasing in CL/LA ratios or increasing in Mn for the added PCL‐b‐PLLA. Moreover, the crystallinity of PLLA matrix increased because of the added compatibilizers. The PCL‐b‐PLLA with the ratio of CL/LA (50/50) and Mn ≥ 39.0 kg/mol were effective compatibilizers for PLLA/PCL blends. When the content of PCL‐b‐PLLA is greater than or equal to 5 phr, the elongations at break of the PLLA/PCL/PCL‐b‐PLLA blends all reached approximately 180%, about 25 times more than the pristine PLLA/PCL(80/20) blend.  相似文献   

14.
The melting behavior and crystallization kinetics of poly(thiodiethylene adipate) (PSDEA) were investigated with differential scanning calorimetry and hot‐stage optical microscopy. The observed multiple endotherms, commonly displayed by polyesters, were influenced by the crystallization temperature (Tc) and ascribed to melting and recrystallization processes. Linear and nonlinear treatments were applied to estimate the equilibrium melting temperature for PSDEA with the corrected values of the melting temperature. The nonlinear estimation yielded a higher value by about 9 °C. Isothermal crystallization kinetics were analyzed according to Avrami's treatment. Values of Avrami's exponent close to 3 were obtained, independently of Tc, in agreement with a crystallization process originating from predetermined nuclei and characterized by three‐dimensional spherulitic growth. As a matter of fact, space‐filling spherulites were observed by optical microscopy at all Tc's. The rate of crystallization became lower as Tc increased, as usual at a low undercooling, the crystallization process being controlled by nucleation. Moreover, the crystal structure of PSDEA was determined from powder X‐ray diffraction data by full profile fitting. A triclinic unit cell containing two polymer chains arranged parallel to the c axis was found. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 553–566, 2004  相似文献   

15.
<正>The non-isothermal crystallization of poly(L-lactide)(PLLA) under quiescent and steady shear flow conditions was in situ investigated by using polarizing optical microscopy(POM) with a hot shear stage and wide-angle X-ray diffraction(WAXD).The shear rate and the cooling rate both play a significant role in the final crystalline morphology and crystallinity.Under quiescent conditions,the morphology assumes different sized spherulites,and its crystallinity dramatically reduces with increasing the cooling rate.On the other hand,the shear flow increases the onset crystallization temperature,and enhances the final crystallinity.When the shear rate is above 5 s~(-1),cylindrite-like crystals are observed, furthermore,their content depends on the cooling rate.  相似文献   

16.
Well‐defined linear poly(L ‐lactide)s with one or two arms (LPLLA and 2LPLLA, respectively) and star‐shaped poly(L ‐lactide)s with four or six arms (4sPLLA and 6sPLLA, respectively) were synthesized and then used for the investigation of the thermal properties, isothermal crystallization kinetics, and spherulitic growth. The maximal melting temperature, the cold‐crystallization temperature, and the degree of crystallinity of these poly(L ‐lactide) polymers decreased with an increasing number of arms in the macromolecule. Moreover, the isothermal crystallization rate constant (K) of these poly(L ‐lactide) polymers decreased in the order of KLPLLA > K2LPLLA > K4sPLLA > K6sPLLA2, which was consistent with the variation trend of the spherulitic growth rate (G). Meanwhile, both K and G of 6sPLLA slightly increased with the increasing molecular weight of the polymer. Furthermore, both LPLLA and 2LPLLA presented spherulites with good morphology and apparent Maltese cross patterns, whereas both unclear Maltese cross patterns and imperfect crystallization were observed for the star‐shaped 4sPLLA and 6sPLLA polymers. These results indicated that both the macromolecular architecture and the molecular weight of the polymer controlled K, G, and the spherulitic morphology of these poly(L ‐lactide) polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2226–2236, 2006  相似文献   

17.
The isothermal crystallization of poly(l ‐lactide) (PLLA) in blends with poly(butylene oxalate) (PBOX) is investigated by time‐resolved small‐angle X‐ray scattering, differential scanning calorimetry, and optical microscopy. We focus on the temperatures at which only PLLA crystallizes while PBOX is amorphous. It is obtained that the addition of PBOX causes a reduction of the melting temperature of PLLA. The lamellar thickness of PLLA crystals decreases whereas the amorphous layer thickness increases with blend composition, suggesting the occurrence of the interlamellar incorporation upon the addition of PBOX. The crystal growth rate and morphology of PLLA/PBOX blends are analyzed by polarized optical microscopy. The spherulite growth rate of PLLA is found to increase with the addition of PBOX. Analysis of the isothermal crystallization in terms of the Lauritzen and Hoffman equation give the reduction of the fold surface free energy upon the addition of PBOX in PLLA, indicating that the mobility of the PLLA chains is significantly improved due to the presence of PBOX. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 192–202  相似文献   

18.
The isothermal crystallization of poly(propylene) and poly(ethylene terephthalate) was investigated with differential scanning calorimetry and optical microscopy. It was found that the induction time depends on the cooling rate to a constant temperature. The isothermal crystallization of the investigated polymers is a complex process and cannot be adequately described by the simple Avrami equation with time‐independent parameters. The results indicate that crystallization is composed of several nucleation mechanisms. The homogeneous nucleation occurring from thermal fluctuations is preceded by the nucleation on not completely melted crystalline residues that can become stable by an athermal mechanism as well as nucleation on heterogeneities. The nucleation rate depends on time, with the maximum shortly after the start of crystallization attributed to nucleation on crystalline residues (possible athermal nucleation) and on heterogeneities. However, the spherulitic growth rate and the exponent n do not change with the time of crystallization. The time dependence of the crystallization rate corresponds to the changes in the nucleation rate with time. The steady‐state crystallization rate in thermal nucleation is lower than the rate determined in a classical way from the half‐time of crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1835–1849, 2002  相似文献   

19.
A blend of two biodegradable and semi‐crystalline polymers, poly (L‐lactic acid) (PLLA; 70 wt%) and poly (butylene succinate‐co‐L‐lactate) (PBSL; 30 wt%), was prepared in the presence of various polyethylene oxide‐polypropylene oxide‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer contents (0.5, 1, 2 wt%). Mechanical, thermal properties, and Fourier transform infrared (FTIR) analysis of the blends were investigated. It was found that the addition of copolymer to PLLA/PBSL improved the fracture toughness of the blends as shown by mode I fracture energies. It was supported by morphological analysis where the brittle deformation behavior of PLLA changed to ductile deformation with the presence of elongated fibril structure in the blend with copolymer system. The glass transition temperature (Tg), melting temperature (Tm) of PLLA, and PBSL shift‐closed together indicated that some compatibility exists in the blends. In short, PEO‐PPO‐PEO could be used as compatibilizer to improve the toughness and compatibility of the PLLA/PBSL blends. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Highly exfoliated isotactic‐polypropylene/alkyl‐imidazolium modified montmorillonite (PP/IMMT) nanocomposites have been prepared via in situ intercalative polymerization. TEM and XRD results indicated that the obtained composites were highly exfoliated PP/IMMT nanocomposites and the average thickness of IMMT in PP matrix was less than 10 nm, and the distance between adjacent IMMT particles was in the range of 20–200 nm. The isothermal crystallization kinetics of highly exfoliated PP/IMMT nanocomposites were investigated by using differential scanning calorimeter(DSC) and polarized optical microscope (POM). The crystallization half‐time t1/2, crystallization peak time tmax, and the Avrami crystallization rate constant Kn showed that the nanosilicate layers accelerate the overall crystallization rate greatly due to the nucleation effect, and the crystallization rate was increased with the increase in MMT content. Meanwhile, the crystallinity of PP in nanocomposites decreased with the increase in clay content which indicated the PP chains were confined by the nanosilicate layers during the crystallization process. Although the well‐dispersed silicate layers did not have much influence on spherulites growth rate, the nucleation rate and the nuclei density increased significantly. Accordingly, the spherulite size decreased with the increase in MMT content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2215–2225, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号