首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Statistic and block copolymers exhibiting activated ester side groups were synthesized by reversible addition‐fragmentation chain transfer polymerization in the presence of cumyl dithiobenzoate, benzyl dithiobenzoate, and 4‐cyano‐4‐((thiobenzoyl)sulfanyl)pentanoic acid as chain transfer agents. Pentafluorophenyl methacrylate and pentafluorophenyl 4‐vinylbenzoate were used to enable a sequential functionalization of the obtained copolymers by conversion of the activated esters with different amines. 1H NMR spectroscopy, 19F NMR spectroscopy, and FTIR spectroscopy showed the successful step‐by‐step conversion of the different activated esters by aniline followed by aliphatic amines, thereby realizing a sequential functionalization of block copolymers with just one specific reactive group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3683–3692, 2010  相似文献   

2.
Novel poly(ester carbonate)s were synthesized by the ring‐opening polymerization of L ‐lactide and functionalized carbonate monomer 9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one derived from pentaerythritol with diethyl zinc as an initiator. 1H NMR analysis revealed that the carbonate content in the copolymer was almost equal to that in the feed. DSC results indicated that Tg of the copolymer increased with increasing carbonate content in the copolymer. Moreover, the protecting benzylidene groups in the copolymer poly(L ‐lactide‐co‐9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one) were removed by hydrogenation with palladium hydroxide on activated charcoal as a catalyst to give a functional copolymer, poly(L ‐lactide‐co‐2,2‐dihydroxylmethyl‐propylene carbonate), containing pendant primary hydroxyl groups. Complete deprotection was confirmed by 1H NMR and FTIR spectroscopy. The in vitro degradation rate of the deprotected copolymers was faster than that of the protected copolymers in the presence of proteinase K. The cell morphology and viability on a copolymer film evaluated with ECV‐304 cells showed that poly(ester carbonate)s derived from pentaerythritol are good biocompatible materials suitable for biomedical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45:1737 –1745, 2007  相似文献   

3.
Polymers containing electrophilic moieties, such as activated esters, epoxides, and alkyl halides, can be readily modified with a variety of nucleophiles to produce useful functional materials. The modification of epoxide‐containing polymers with amines and other strong nucleophiles is well‐documented, but there are no reports on the modification of such polymers with alcohols. Using phenyloxirane and glycidyl butyrate as low molecular weight model compounds, it was determined that the acid‐catalyzed ring‐opening of aryl‐substituted epoxides by alcohols to form β‐hydroxy ether products was significantly more efficient than that of alkyl‐substituted epoxides. An aryl epoxide‐type styrenic monomer, 4‐vinylphenyloxirane (4VPO), was synthesized in high yield using an improved procedure and then polymerized in a controlled manner under reversible addition‐fragmentation chain‐transfer (RAFT) polymerization conditions. A successful chain extension with styrene proved the high degree of chain‐end functionalization of the poly4VPO‐based macro chain transfer agent. Poly4VPO was modified with a library of alcohols and phenols, some of which contained reactive functionalities, e.g., azide, alkyne, allyl, etc., using either CBr4 (in PhCN at 90 °C for 2–3 days) or BF3 (in CH2Cl2 at ambient temperature over 30 min) as the catalyst. The resulting β‐hydroxy ether‐functionalized homopolymers were characterized using size exclusion chromatography, 1H NMR and IR spectroscopy, and thermal gravimetric analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1132–1144  相似文献   

4.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Polymers containing thiol‐reactive maleimide groups on their side chains have been synthesized by utilization of a novel methacrylate monomer containing a masked maleimide. Diels‐Alder reaction between furan and maleimide was adapted for the protection of the reactive maleimide double bond prior to polymerization. AIBN initiated free radical polymerization was utilized for synthesis of copolymers containing masked maleimide groups. No unmasking of the maleimide group was evident under the polymerization conditions. The maleimide groups in the side chain of the polymers were unmasked into their reactive form by utilization of retro Diels‐Alder reaction. This cycloreversion was monitored by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and 1H and 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4545–4551, 2007  相似文献   

6.
A novel reactive polymer containing cyanate groups in the side chain was prepared by free radical polymerization of a cyanate‐containing monomer, 2‐(4‐cyanatophenyl)ethyl methacrylate ( 1 ). The monomer 1 and its polymer, poly[2‐(4‐cyanatophenyl)ethyl methacrylate] (PCPMA), were stable under the air for a long period. The copolymerization of 1 and methyl methacrylate provided the corresponding copolymers with various cyanate contents. The availability of the cyanate‐containing polymers as a reactive polymer was investigated. Model reaction using 4‐cyanatotoluene revealed that a cyanate group reacted with aliphatic amines, whereas no reaction occurred in the presence of water, alcohols, and aromatic amines under mild conditions. Post‐functionalization of PCPMA was demonstrated using aliphatic amines or diamines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 699–706  相似文献   

7.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

8.
A functionalized cyclic carbonate monomer containing a cinnamate moiety, 5‐methyl‐5‐cinnamoyloxymethyl‐1,3‐dioxan‐2‐one (MC), was prepared for the first time with 1,1,1‐tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L ‐lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester‐carbonate). The results indicated that the copolymers displayed a single glass transition temperature (Tg) and the Tg decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo‐crosslinking of the cinnamate‐carrying copolymer was also demonstrated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 161–169, 2009  相似文献   

9.
The reversible addition fragmentation chain transfer (RAFT) polymerization of five active ester monomers based on 4‐vinylbenzoic acid had been investigated. Pentafluorophenyl 4‐vinylbenzoate could be polymerized under RAFT conditions yielding polymers with very good control over molecular weight and narrow molecular weight distributions. Following the synthesis of diblock copolymers consisting of polystyrene, polypentafluorostyrene, poly(4‐octylstyrene), or poly(4‐acetoxystyrene) as an inert block and poly(pentafluorophenyl 4‐vinylbenzoate) as a reactive block was successfully performed. The diblock copolymer poly(pentafluoro styrene)‐block‐poly(pentafluorophenyl 4‐vinylbenzoate) had been analyzed by 19F NMR spectroscopy in solution, demonstrating the synthetic potential of pentafluorophenyl 4‐vinylbenzoate as an extremely valuable monomer for the synthesis of highly functionalized polymeric architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1696–1705, 2009  相似文献   

10.
A modular approach toward the synthesis of polymers containing dendron groups as side chains is developed using the Diels–Alder “click” reaction. For this purpose, a styrene‐based polymer appended with anthracene groups as reactive side chains was synthesized. First through third‐generation polyester dendrons containing furan‐protected maleimide groups at their focal point were synthesized. Facile, reagent‐free, thermal Diels–Alder cycloaddition between the anthracene‐containing polymer and latent‐reactive dendrons leads to quantitative functionalization of the polymer chains to afford dendronized polymers. The efficiency of this functionalization step was monitored using 1H and 13C NMR spectroscopy and FTIR and UV–vis spectrometry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 410–416, 2010  相似文献   

11.
A diverse pool of aryl bistrifluorovinyl ether (BTFVE) compounds with reactive pendant groups were prepared in a facile, high yielding three step “one‐pot” synthesis from commercial 4‐bromo(trifluorovinyloxy)benzene. Monomers were confirmed from ATR–FTIR, 1H, 13C, and 19F NMR, and HRMS analysis. Aryl BTFVE compounds were thermally polymerized to afford perfluorocyclobutyl (PFCB) aryl ether polymers with high number–average molecular weight (Mn) for homopolymers (17,050–27,090) and copolymers with 4,4′‐bis(trifluorovinyloxy)biphenyl monomers (27,860–56,500). The PFCB aryl ether homo‐ and copolymers collectively possess high thermal stability (>299 °C in N2) and are readily solution processable producing optically transparent films. The thermal polymerization was achieved and reactive moieties remained intact, aside from those functionalized with acrylates. In the case with acrylate functionalized polymers, orthogonal polymerization was achieved by first photopolymerizing the acrylates followed by thermal curing of the aryl trifluorovinyl ether endgroups. Preliminary results in this study produced the successful preparation of photodefinable PFCB aryl ether material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1887–1893, 2010  相似文献   

12.
Crown ether‐functionalized dendronized copolymers with an alternating structure were synthesized by free radical copolymerization of styrene derivatives pendent with Percec‐type polyether dendron of two generations and maleimide pendent with dibenzo[24]crown‐8 (24C8). Novel dendronized copolymers bearing tremendous host molecular cavities have been characterized by 1H NMR, 13C NMR spectroscopy, static light scattering (SLS), and differential scanning calorimetry (DSC) analysis as well as atomic force microscopy (AFM) techniques. Host–guest interactions between 24C8 units dispersed along the dendronized copolymers and organic ammonium salts of pyrene, anthracene, and phenol have been explored. These molecular recognition processes can be monitored by 1H NMR spectroscopy and fluorescence excitation spectroscopy. These results showed that the supramolecular polymer systems are acid–base controllable, demonstrating that dendronized copolymers may be modified reversibly via host–guest interaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683  相似文献   

14.
A series of perfluorocyclobutyl (PFCB) aryl ether‐based amphiphilic diblock copolymers containing hydrophilic poly(acrylic acid) (PAA) and fluorophilic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) segments were synthesized via successive atom transfer radical polymerization (ATRP). 2‐MBP‐initiated and CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine‐catalyzed ATRP homopolymerization of the PFCB‐containing methacrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate, can be performed in a controlled mode as confirmed by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.38. The block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.36) were synthesized by ATRP using Br‐end‐functionalized poly(tert‐butyl acrylate) (PtBA) as macroinitiator followed by the acidolysis of hydrophobic PtBA block into hydrophilic PAA segment. The critical micelle concentrations of the amphiphilic diblock copolymers in different surroundings were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the micelles were investigated by transmission electron microscopy and dynamic laser light scattering, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

16.
Synthesis of a library of amphiphilic random copolymers from a single reactive pre‐polymer and their self‐assembly is reported. Post‐polymerization modifications of the parent polymer containing pendant N‐hydroxy succinimide (NHS) ester groups with various oligooxyethylene (OE) amines produce amphiphilic random copolymers with same degree of polymerization and equal extent of randomness. 1H‐NMR and FT‐IR data indicate quantitative substitution in all cases. The critical aggregation concentration (CAC) for all the polymers is estimated to be in the range of 10?5 M. Stability of these nano‐aggregates is studied by photoluminescence using time dependent F—rster Resonance Energy Transfer (FRET) between co‐encapsulated lipophilic dyes namely DiO and DiI in the hydrophobic pocket of the aggregates. These studies suggest remarkably high stability for all systems. However those with shorter hydrophilic pendant chains are found to be even more robust. Morphology is examined by high resolution transmission electron microscopy (HRTEM) which reveals multi‐micellar clusters and vesicles for polymers containing short and longer OE segments, respectively. Encapsulation efficacy is tested with both hydrophobic and hydrophilic guest molecules. All of them can encapsulate hydrophobic guest pyrene while a hydrophilic dye Calcein can be sequestered only in vesicle forming polymers. Lower critical solution temperature (LCST) is exhibited by only one polymer that contains the shortest OE chains. All polymers exhibit excellent cell viability as determined by MTT assay. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4932–4943  相似文献   

17.
Novel biodegradable amphiphilic graft copolymers containing hydrophobic poly(ester‐carbonate) backbone and hydrophilic poly(ethylene glycol) (PEG) side chains were synthesized by a combination of ring‐opening polymerization and “click” chemistry. First, the ring‐opening copolymerization of 5,5‐dibromomethyl trimethylene carbonate (DBTC) and ε‐caprolactone (CL) was performed in the presence of stannous octanoate [Sn(Oct)2] as catalyst, resulting in poly(DBTC‐co‐CL) with pendant bromo groups. Then the pendant bromo groups were completely converted into azide form, which permitted “click” reaction with alkyne‐terminated PEG by Huisgen 1,3‐dipolar cycloadditions to give amphiphilic biodegradable graft copolymers. The graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectra and gel permeation chromatography measurements, which confirmed the well‐defined graft architecture. These copolymers could self‐assemble into micelles in aqueous solution. The size and morphologies of the copolymer micelles were measured by transmission electron microscopy and dynamic light scattering, which are influenced by the length of PEG and grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

20.
The synthesis of block copolymers via polymer conjugation of well‐defined building blocks offers excellent control over the structures obtained, but often several coupling strategies need to be explored to find an efficient one depending on the building blocks. To facilitate the synthesis of polymers with adjustable functional end‐groups for polymer conjugation, we report on the combination of activated ester chemistry with RAFT polymerization using a chain transfer agent (CTA) with a pentafluorophenyl ester (PFP‐CTA), which allows for flexible functionalization of either the CTA prior to polymerization or the obtained polymer after polymerization. Different polymethacrylates, namely PMMA, P(t‐BuMA) and PDEGMEMA, were synthesized with an alkyne‐CTA obtained from the aminolysis of the PFP‐CTA with propargylamine, and the successful incorporation of the alkyne moiety could be shown via 1H and 13C NMR spectroscopy and MALDI TOF MS. Further, the reactive α‐end‐groups of polymers synthesized using the unmodified PFP‐CTA could be converted into azide and alkyne end‐groups after polymerization, and the high functionalization efficiencies could be demonstrated via successful coupling of the resulting polymers via CuAAC. Thus, the PFP‐CTA allows for high combinatory flexibility in polymer synthesis facilitating polymer conjugation as useful method for the synthesis of block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号