首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the X‐ray structure and magnetic properties of iron(II) acetate – starting material for the synthesis of a wide range of iron complexes – are presented. The compound crystallises in the space group Pbcn and was identified as 2D coordination polymer consisting of iron atoms and acetate moieties with all the iron atoms hexacoordinate and different coordination modes for the acetate moieties. Additional hydrogen bond contacts lead to a porous coordination polymer with 1D channels in the size of mesopores. Temperature dependent magnetic measurements confirm that the complex is a high‐spin compound in the entire temperature range investigated with a room temperature magnetic moment of 5.4 μB. Field‐dependent magnetisation measurements reveal a slightly sigmoidal curve progression typical for metamagnetism.  相似文献   

2.
The reaction of iron(II) acetate with the tetradentate Schiff base like ligand H2L [(E,E)‐[{diethyl 2,2’‐[4,5‐dihydroxy‐1,2‐phenylenebis(iminomethylidyne)]bis3‐oxobutanato}]) leads to the formation of the octahedral N2O4 coordinated complex [FeL(MeOH)2] · MeOH ( 1 ). Conversion of 1 with N‐methylimidazole (N‐meim) leads to the N4O2 coordinated complex [FeL(N‐meim)2] · MeOH ( 2 ). Both complexes are pure HS compounds that were characterised using magnetic measurements and X‐ray crystallography. A special attention was given to the role of the two hydroxyl groups at the phenyl ring on the formation of a hydrogen bond network and the influence of this network on the magnetic properties.  相似文献   

3.
The first lanthanide sulfite compound with a secondary ligand, Nd(SO3)(C2H3O2), was hydrothermally synthesized and solved with single‐crystal X‐ray diffraction. In order to prevent the facile oxidation of the sulfite to sulfate, careful control of both pH and reaction temperature were required for successful synthesis of the title compound; even slight changes in conditions allow for the facile oxidation of sulfite to sulfate and yields the known [Nd(C2H3O2)(SO4)(H2O)2] structure. This two‐dimensional sheet topology further expands the chemistry of lanthanide sulfite extended structures and also allows for easy structural comparisons to other lanthanide sulfite compounds and the above mentioned neodymium sulfate‐acetate compound.  相似文献   

4.
Based on the bis‐triazole ligand 2, 6‐bis(1, 2,4‐triazole‐4‐yl)pyridine (L), the triazole‐iron(II) complexes [Fe(L)2(dca)2(H2O)2] · 2H2O ( 1 ) (Nadca = sodium dicyanamide), {[Fe(μ2‐L)2(H2O)2]Cl2}n ( 2 ), and {[Fe(μ2‐L)2(H2O)2](ClO4)2 · L · H2O}n ( 3 ) were isolated by solvent diffusion methods. When iron(II) salts and Nadca were used, compound 1 was isolated, which contains mononuclear Fe(L)2(dca)2(H2O)2 units. When FeCl2 or FeClO4 were used, one‐dimensional (1D) cation iron(II) chains ( 2 ) and two‐dimensional (2D) cation iron(II) networks ( 3 ) were isolated indicating anion directing structural diversity. Moreover, variable‐temperature magnetic susceptibility data of 1 – 3 were recorded in the temperature range 2–300 K. The magnetic curve of complex 2 was fitted by using the classical spin Heisenberg chain model indicating anti‐ferromagnetic interactions (J = –5.31 cm–1). Obviously complexes 1 – 3 show no detectable thermal spin crossover behaviors, the lack of spin‐crossover behavior may be correlated with FeN4O2 coordination spheres in 1 – 3 .  相似文献   

5.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

6.
The series of binuclear Cu(II) and Ni(II) complexes with an asymmetrical exchange fragment based on 2,6‐diformyl‐4‐methylphenol bishydrazone has been synthesized for the first time. The compositions and structures of both ligands and its complexes have been established with the data of IR, 1H NMR, and extended X‐ray absorption fine structure (EXAFS) spectroscopical studies as well as magnetic measurements. The structure of [Ni2L3(μ‐Pz)] · 2CH3OH (L = triply deprotonated form of bishydrazone, Pz = pyrazol) was confirmed by X‐ray crystallographic analysis. In this complex, the coordination environment of two nickel ions is quite different, one nickel atom is square‐planar and the other is distorted octahedral coordinated. The values of exchange parameter calculated in terms of HDVV theory have been compared with the features of an asymmetrical exchange fragment's electronic and geometrical structure.  相似文献   

7.
Four new six‐coordinate and one pentacoordinate iron(II) complexes with imidazole as axial ligand were synthesised and characterised. For two of the complexes crystals suitable for X‐ray structure analysis were obtained and an extended network of hydrogen bonds was observed in both cases. Magnetic susceptibility studies revealed, that two of the octahedral complexes are high‐spin complexes in the entire temperature range, whereas for the other two gradual spin transitions are observed.  相似文献   

8.
Three structurally related flexible bis(imidazole) ligands reacted with Co(NO3)2 · 6H2O and succinic acid (L1) to yield three new metal‐organic frameworks {[Co(L1)(L2)] · (H2O)}n ( 1 ) [L2 = 2‐bis(imidazol‐1‐yl)ethane], {[Co(L1)(L3)](H2O)}n ( 2 ) [L3 = 1,4‐bis(imidazol‐1‐yl) butane], and {[Co(L1)(L4)] · (H2O)}n ( 3 ) [L4 = 1,4‐bis(2‐methyl‐imidazol‐1‐yl)butane], respectively. These complexes were synthesized under solvothermal conditions and characterized by elemental analysis, IR spectroscopy, single‐crystal and powder X‐ray diffraction, as well as thermal analyses. Interestingly, the ligands in these complexes exhibit different conformations and further cause three different configurations. Complex 1 shows a three‐dimensional (3D) framework, which is connected by two‐dimensional (2D) layer structures through hydrogen bonds. Complex 2 is a diamond structure with threefold interpenetration. Complex 3 is a 3D framework linked by hydrogen bonds like complex 1 .  相似文献   

9.
Three metal coordination polymers [Zn(bdc)(L)(H2O)]n ( 1 ), [Co(pta)(L)(H2O)2]n ( 2 ), and [Cd(tda)(L)(H2O)]n ( 3 ) [H2bdc = 1,2‐benzene dicarboxylate acid, H2pta = terephthalic acid, H2tda = 2,5‐thiophenedicarboxylic acid, L = 3,5‐bis(imidazole‐1‐yl)pyridine] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a three‐dimensional (3D) structure with cco topology with the symbol 65 · 8, whereas complex 2 features a 3D structure with cds topology with the symbol 65 · 8. Complex 3 has a 2D network constructed by the cadmium atoms bridged through the ligands tda and L. Their X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, their luminescent properties were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the 3D networks.  相似文献   

10.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

11.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

12.
Two copper(I) complexes of compositions [Cu(HL)I]2 · EtOH ( 1 ) and [Cu(HL)3]I · MeOH ( 2 ) were synthesized via the reactions of HL [HL = 2(4,5‐diphenyl‐1H‐imidazol‐2‐yl)pyridine] and CuI in EtOH and MeOH, respectively, under solvothermal conditions. The complexes were characterized by X‐ray single crystal diffraction, IR spectroscopy, and elemental analysis. Compounds 1 and 2 are catalytically active towards ketalization reaction, giving various ketals under mild conditions.  相似文献   

13.
Herein we report on the synthesis, structure, and optical properties of the fluorescent blue phosphazene dye 1,6‐bis(dimethylamino)‐2,5,7,10‐tetraazo‐1,6λ5‐diphosphapyrene, which was isolated as the unexpected product of the reaction between 1,4,5,8‐(tetraamino)naphthalene and [P(NMe2)3Br]Br. This dye, which turned out to be soluble in water and a range of organic solvents (including hexane, tetrahydrofuran / petroleum ether, acetonitrile, and ethanol), was structurally characterized by XRD. Its absorption as well as emission spectra and their sensitivity to pH variations were analyzed. The experimental work is complemented by quantum chemical calculations on the possible intermediate on the way to the isolated product and on its pKa value.  相似文献   

14.
1,3‐Bis(5‐nitraminotetrazol‐1‐yl)propan‐2‐ol ( 5 ) was prepared by the reaction of 5‐aminotetrazole and 1,3‐dichloroisopropanol under basic conditions. Obtained 1,3‐bis(5‐aminotetrazol‐1‐yl)propan‐2‐ol ( 3 ) was nitrated with 100 % nitric acid. In this context in situ hydrolysis of the nitrate ester was studied. Metal and nitrogen‐rich salts of the neutral compound 5 were prepared and analyzed. Crystal structures of three salts and the sensitivities toward impact, friction and electrostatic discharge were determined as well. The performance values of the compounds were calculated using the EXPLO5 program. A detailed comparison of the different salts is also enclosed.  相似文献   

15.
A series of macrocyclic Ni/Fe/S cluster complexes were synthesized and structurally characterized. The macrocyclic type of (diphosphine)Ni‐bridged double butterfly Fe/S complexes [μ‐SCH2CH2OCH2CH2S‐μ][(μ‐S=CS)Fe2(CO)6]2‐[Ni(diphosphine)] ( 1 – 3 ; diphosphine = dppe, dppv, dppb) were prepared by treatment of the dianion [{μ‐SCH2CH2OCH2CH2S‐μ}{(μ‐CO)Fe2(CO)6}2]2–, generated in situ from Fe3(CO)12, Et3N, and HSCH2CH2OCH2CH2SH with excess CS2 followed by treatment of the resulting dianion [{μ‐SCH2CH2OCH2CH2S‐μ}{(μ‐SC=S)Fe2(CO)6}2]2– with (diphosphine)NiCl2. The three complexes 1 – 3 were characterized by elemental analysis and IR, 1H NMR, and 31P NMR spectroscopy. In addition, the molecular structures of 2 and 3 were established by X‐ray crystallography.  相似文献   

16.
Lithiation of N‐(2,6‐diisopropylphenyl)‐N′‐(2‐pyridylethyl)benzamidine ( 1 ) with LiN(SiMe3)2 in a solvent mixture of toluene and TMEDA yields hexameric lithium N‐(2,6‐diisopropylphenyl)‐N′‐(2‐pyridylethyl)benzamidinate ( 2 ), which can be purified by recrystallization from a solvent mixture of toluene and THF. The three‐coordinate lithium ions have T‐shaped coordination spheres. The negative charge is delocalized within the 1,3‐diazaallylic system, which adopts a (syn‐Z)‐arrangement.  相似文献   

17.
The structure of trans‐[Cr(Me2tn)2Cl2]2ZnCl4 (Me2tn = 2,2‐dimethylpropane‐1,3‐diamine) was determined by a single‐crystal X‐ray diffraction study at 173 K. The analysis reveals that there are three crystallographically independent chromium(III) complex cations in the title compound. The chromium(III) atoms are coordinated by four nitrogen atoms of Me2tn and two chlorine atoms in a trans arrangement, displaying a distorted octahedral geometry. The two six‐membered chelate rings in three complex cations are oriented in an anti chair–chair conformation with respect to each other. The Cr–N and Cr–Cl bond lengths average 2.0862(2) and 2.3112(6) Å, respectively. The ZnCl42– have slightly distorted tetrahedral arrangement with Zn–Cl lengths and the Cl–Zn–Cl angles are influenced by hydrogen bonding. The resolved absorption maxima in the electronic d–d spectrum were fitted with a secular determinant for a quartet energy state of the d3 configuration in a tetragonal field. It is confirmed that the nitrogen atoms of the Me2tn ligand are strong σ donors, but the chloro ligands have weak σ‐ and π donor properties toward the chromium(III) ion.  相似文献   

18.
The new mono‐ and binuclear semiquinonato dimethylthallium complexes (Q‐TTF‐SQ)TlMe2 ( 1 ) and Me2Tl(SQ‐TTF‐SQ)TlMe2 ( 2 ) based on di‐o‐quinone with tetrathiafulvalene (TTF) bridge, 4,4′,7,7′‐tetra‐tert‐butyl‐2,2′‐bis‐1,3‐benzodithiol‐5,5′,6,6′‐tetraone Q‐TTF‐Q, were synthesized by the reaction between corresponding mono‐ and di‐sodium semiquinonates (Q‐TTF‐SQ)Na and Na(SQ‐TTF‐SQ)Na and one or two equivalents of Me2TlCl, respectively. The same products could be obtained by the interaction of Q‐TTF‐Q with one or two equivalents of Me3Tl. Complexes 1 and 2 were characterized by IR and electronic absorption spectroscopy, EPR, and magnetic measurements. The molecular structures of 1 and 2 were determined by single‐crystal X‐ray diffraction. It was found that mono‐semiquinonato derivative 1 partially disproportionates into Q‐TTF‐Q and binuclear complex 2 in THF solution. According to variable temperature magnetic susceptibility measurements and EPR data, compound 1 reveals paramagnetic behavior with an S = 1/2 state in the range 50–300 K, whereas compound 2 has an S = 0 ground state as the consequence of antiferromagnetic coupling between semiquinonato moieties realized through the TTF‐bridge.  相似文献   

19.
20.
The crystal and molecular structure of [Pd(iPr2dtc)2] (dtc = dithiocarbamate) have been determined by X‐ray crystallography. The unit cell of the crystal structure consists of two discrete monomelic molecules of [Pd(iPr2dtc)2]. The Pd(II) ion has an square‐planar geometry. The electronic and IR spectral data are in agreement with the X‐ray structure. The TG data indicate slight degradation of a few percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号