首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the whole plant of Morina nepalensis var. alba Hand.‐Mazz., two new acylated flavonoid glycosides ( 1 and 2 ), together with four known flavonoid glycosides ( 3–6 ), were isolated. Their structures were determined to be quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (monepalin A, 1 ), quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranoside (monepalin B, 2 ), quercetin 3‐O‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (rumarin, 3 ), quercetin 3‐O‐β‐D ‐galactopyranoside ( 4 ), quercetin 3‐O‐β‐D ‐glucopyranoside ( 5 ) and apigenin 4O‐β‐D ‐glucopyranoside ( 6 ). Their structures were determined on the basis of chemical and spectroscopic evidence. Complete assignments of the 1H and 13C NMR spectra of all compounds were achieved from the 2D NMR spectra, including H–H COSY, HMQC, HMBC and 2D HMQC‐TOCSY spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A new sodium salt of anthraquinone named sodium emodin‐1‐O‐β‐gentiobioside, together with nine known compounds, viz. rubrofusarin‐6‐O‐β‐D ‐gentiobioside, chrysophanol‐1‐O‐β‐D ‐glucopyranosyl‐(1–3)‐β‐D ‐glucopyranosyl‐(1–6)‐β‐D ‐glucopyranoside, obtusifolin‐2‐O‐β‐D ‐glucopyranoside, aurantio‐obtusin‐6‐O‐β‐D ‐glucopyranoside, physcion‐8‐O‐β‐D ‐glucopyranoside, 1‐hydroxyl‐2‐acetyl‐3,8‐dimethoxy‐6‐O‐β‐D ‐apiofuranosyl‐(1–2)‐β‐D ‐glucosylnaphthalene, toralactone‐9‐O‐β‐D ‐gentiobioside, aurantio‐obtusin, rubrofusarin‐6‐O‐β‐D ‐apiofuranosyl‐(1–6)‐O‐β‐D ‐glucopyranoside, was isolated from the seeds of Cassia obtusifolia and its structure was elucidated by 1H and 13C NMR technique assisted with acid–alkali titration. The change of chemical shifts of sodium emodin‐1‐O‐β‐gentiobioside before and after acid–alkali titration was also characterized. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Four new ursane‐type saponins, monepalosides C–F, together with a known saponin, mazusaponin II, were isolated from Morina nepalensis var. alba Hand.‐Mazz. Their structures were determined to be 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside C, 1 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside D, 2 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[beta;‐D ‐glucopyranosy‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside E, 3 ) and 3‐O‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranoside (monepaloside F, 4 ) on the basis of chemical and spectroscopic evidence. 2D NMR techniques, including 1H–1H COSY, HMQC, 2D HMQC‐TOCSY, HMBC and ROESY, and selective excitation experiments, including SELTOCSY and SELNOESY, were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Five new di‐ and triglycosides, irigenin 7‐[Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 1 ), 6‐hydroxygenistein 4′‐[Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 2 ), nigricin 4′‐[Oβ‐D ‐glucopyanosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 3 ), nigricin 4′‐[Oβ‐D ‐glucopyanosyl‐(1→2)‐O‐[α‐L ‐rhamnopyranosyl‐(1→6)]‐β‐D ‐glucopyranoside] ( 4 ), and 7‐{4′‐{[2″‐O‐(4′′′′‐acetyl‐2′′′′‐methoxyphenyl)‐β‐D ‐glucopyranosyl]oxy}‐3′‐(β‐D ‐glucopyranosyloxy)phenyl]‐9‐methoxy‐8H‐1,3‐dioxolo[4,5‐g]‐[1 benzopyran‐8‐one‐] ( 5 ), along with a known compound, nigricin 4′‐(β‐D ‐glucopyranoside) ( 6 ), were isolated from the rhizomes of Iris germanica. The structures of these compounds were established by spectroscopic methods, including 2D NMR spectroscopic techniques.  相似文献   

5.
Two new triterpenoid saponins, gledistside A ( 1 ) and gledistside B ( 2 ), isolated from the fruits of Gledistsia dolavayi Franch., were characterized as the 3,28‐O‐bisdesmoside of echinocystic acid acylated with monoterpene carboxylic acids. On the basis of spectroscopic and chemical evidence, their structures were elucidated as 3‐O‐β‐D ‐xylopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐28‐O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→4)‐[β‐D ‐galactopyranosyl‐(1→2)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐{6‐O‐[2,6‐dimethyl‐6(S)‐hydroxy‐2‐trans‐2,7‐octadienoyl]}‐β‐D ‐glucopyranosylechinocystic acid ( 1 ) and 3‐O‐β‐D ‐xylopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐28‐O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→4)‐[β‐D ‐galactopyranosyl‐(1→2)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐{6‐O‐[2‐hydroxymethyl‐6‐methyl‐6(S)‐hydroxy‐2‐trans‐2,7‐octadienoyl]}‐β‐D ‐glucopyranosylechinocystic acid ( 2 ). The complete 1H and 13C assignments of saponins 1 and 2 were achieved on the basis of 2D NMR spectra including HMQC‐TOCSY, TOCSY, 1H–1H COSY, HMBC, ROESY and HMQC spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The four new lariciresinol‐based lignan glycosides, (?)‐lariciresinol 4′‐(6″‐O‐feruloyl‐β‐D ‐glucopyranoside) ( 1 ), (?)‐lariciresinol 4′‐(4″,6″‐di‐O‐feruloyl‐β‐D ‐glucopyranoside) ( 2 ), 5,5′‐dimethoxylariciresinol 4′‐(4″,6″‐di‐O‐feruloyl)‐β‐D ‐glucopyranoside) ( 3 ), and 4‐O‐[α‐(1,2‐dihydroxyethyl)syringyl]‐5,5′‐dimethoxylariciresinol 4′‐(4″,6″‐di‐O‐feruloyl‐β‐D ‐glucopyranoside) ( 4 ), together with two known ones, lariciresinol 4′‐β‐D ‐glucopyranoside) ( 5 ) and tortoside B ( 6 ), were isolated from the BuOH extract of Rhus javanica var. roxburghiana roots, and their structures were established by means of various spectroscopic techniques.  相似文献   

7.
The three new 3‐O‐methylquercetin glucosides 1 – 3 , together with three known congeners and 3‐O‐methylquercetin, were isolated from the fern Ophioglossum pedunculosum (quercetin=2‐(3,4‐dihydroxyphenyl)‐3,5,7‐trihydroxy‐4H‐1‐benzopyran‐4‐one). The new compounds were identified on the basis of spectroscopic analysis as 5′‐isoprenyl‐3‐O‐methylquercetin 4′,7‐di‐β‐D ‐glucopyranoside ( 1 ), 3‐O‐methylquercetin 4′‐β‐D ‐glucopyranoside 7‐[O‐β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranoside] ( 2 ), and 3‐O‐methylquercetin 7‐[O‐β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranoside] ( 3 ). The effect of the isolated compounds on lipopolysaccharide (LPS)‐induced NO production was evaluated. The inhibitory activity of 3‐O‐methylquercetin derivatives decreased markedly with the increasing number of glucosyl groups in the structures.  相似文献   

8.
Extensive 1D (1H NMR, HBBD‐13C NMR, DEPT‐13C NMR) and 2D (COSY, TOCSY, NOESY, HMQC and HMBC) NMR analysis was used to characterize the structure of a new bisdesmoside saponin isolated from the methanol extract of stems of Cordia piauhiensis Fresen as 3β‐O‐[α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl]ursolic acid 28‐O‐[β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl] ester. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Two novel oligosaccharides, mono‐ and difructosyllactosucrose {[O‐β‐D ‐fructofuranosyl‐(2 → 1)]n‐β‐D ‐fructofuranosyl‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐α‐D ‐glucopyranoside, n = 1 and 2} were synthesized using 1F‐fructosyltransferase purified form roots of asparagus (Asparagus officinalis L.). Their 1H and 13C NMR spectra were assigned using several NMR techniques. The spectral analysis was started from two anomeric methines of aldose units, galactose and glucose, since they showed separate characteristic signals in their 1H and 13C NMR spectra. After assignments of all the 1H and 13C signals of two units of aldose, they were discriminated as galactose and glucose using proton–proton coupling constants. The HMBC spectrum revealed the galactose residue attached to C‐4 of glucose, fructose residue attached to the C‐1 of glucose, and further fructosyl fructose linkage extended from the glucosyl fructose residues. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Two new acylated flavonol glycosides, 3‐O‐{[2‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside and 3‐O‐{2‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside, trivially named as brauhenefloroside E (1) and F (2), respectively, were isolated from the fruits of Stocksia brauhica and their structures were elucidated using spectroscopic methods, including 2D NMR experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Three new stilbenoids, including α‐(3′‐Oβ‐D ‐glucopyranosyl‐5′‐methoxyphenyl)‐2‐methoxy‐3‐methylbenzofuran ( 1 ), 4‐methyl‐(E)‐resveratrol 3‐(2″‐p‐hydroxybenzoyl)‐Oβ‐D ‐glucopyranoside ( 2 ), and 5‐O‐methyl‐(E)‐resveratrol 3‐(6″‐acetyl)‐Oβ‐D ‐glucopyranoside ( 3 ), together with six known stilbenoids and phenols, acetovanillone 1‐(6′‐vanilloyl)‐Oβ‐D ‐glucopyranoside, eugenyl‐Oβ‐D ‐glucopyranoside, α‐(3′‐hydroxy‐5′‐methoxy‐2′‐methylphenyl)‐2‐hydroxybenzofuran, α‐(3′‐hydroxy‐5′‐methoxyphenyl)‐2‐hydroxybenzofuran, pinosilvin 3‐Oβ‐D ‐glucopyranoside, and (E)‐resveratrol 3‐(6″‐galloyl)‐Oβ‐D ‐glucopyranoside were isolated from the EtOH extract of the stem bark of Acanthopanax brachypus. Their structures were determined by spectral analysis including extensive 2D‐NMR spectral analyses. Compounds 2 and 3 exhibited weak cytotoxicity against human tumor A549 cell line (IC50 values of 4.87 and 5.63 μM , resp.).  相似文献   

12.
Phytochemical investigation of the stem bark of Acanthopanax brachypus afforded a new labdanetype diterpene glycoside, 3α‐trans‐sinapoyloxy‐jhanol 18‐O‐β‐D‐glucopyranoside ( 1 ), together with four known compounds, including one diterpene acid, acanthoic acid ( 2 ), one coumarin, isofraxidin ( 3 ), one phenolic glycoside, sasanquin ( 4 ), as well as one chalcone glycoside, okanin 4‐methyl ether‐3′‐O‐β‐D‐glucopyranoside ( 5 ). All of the structures were characterized by means of spectroscopic methods, including 1H, 13C, 2D‐NMR and HR‐MS, as well as chemical methods and comparison with the literature data.  相似文献   

13.
A new clionasterol glucoside, clionasterol‐[(1'→3α)‐O‐β‐D]‐glucopyranoside ( 1 ), a new acylated clionasterol glucoside, clionasterol‐[6'‐O‐acyl‐(1'→3β)‐O‐b‐D]‐glucopyranoside ( 2 ) and clionasterol ( 3 ) were isolated from the aerial parts of Oplismenus burmannii. The nature and length of fatty acid acyl chains in 2 was identified by alkaline methanolysis of compound 2 . The aglycone fraction on GC‐MS analysis showed three peaks in GC at tR 49.86 (82.1%), 51.13 (13.3%) and 56.53 (4.6%) min, which were characterized as arachidic acid methyl ester ( a ) oleic acid methyl ester ( b ) and 12‐methyltetradecanoic acid methyl ester ( c ) respectively. Thus 2 was characterized as a mixture of three new compounds, clionasterol‐[6'‐O‐eicosanoyl‐(1'→3β)‐O‐β‐D]‐glucopyranoside ( 2a ), clionasterol‐[6'‐O‐(8Z)‐octa‐deca‐9‐enoyl‐(1'→3β)‐O‐β‐D]‐glucopyranoside ( 2b ) and clionasterol‐[6'‐O‐(12‐methyltetradecanoyl)‐(1'→3β)‐O‐β‐D]‐glucopyranoside ( 2c ).  相似文献   

14.
Three new acacic acid derivatives, named coriariosides C, D, and E ( 1–3 ) were isolated from the roots of Albizia coriaria. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and mass spectrometry as 3‐O‐[β‐D ‐xylopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl‐(1 → 6)‐2‐(acetamido)‐2‐deoxy‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐ 6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐{β‐D ‐fucopyranosyl‐(1 → 6)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐α‐L ‐rhamno pyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 2 ), and 3‐O‐[β‐D ‐fucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl)‐β‐D ‐quinovopyranosyl]octa‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐glucopyranosyl ester ( 3 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
An off‐line two‐dimensional high‐speed counter‐current chromatography strategy combined with the wavelength switching technique and extrusion elution mode was successfully developed and applied to the isolation of polar antioxidants from Abelmoschus esculentus (L).Moench. Target‐guided by the result of 2,2‐diphenyl‐1‐picrylhydrazyl screening assay, four antioxidants were obtained with purities over 90% through orthogonal high‐speed counter‐current chromatography separation. UV spectroscopy, mass spectrometry and 1H NMR spectroscopy were employed to identify their structures, which were assigned as l ‐tryptophan, quercetin‐3‐O‐sophoroside, 5,7,3′,4′‐tetrahydroxyflavonol‐3‐O‐[β‐d ‐rhamnopyranosil‐(1→2)]‐β‐d ‐glucopyranoside, and quercetin‐3‐O‐glucoside. Each monomer exhibited significant antioxidant activity. The results demonstrated that proposed method could be an effective approach to isolate bioactive compounds from complex natural products.  相似文献   

16.
Three new natural products, a lignoid glycoside 1 and two dimeric phenylpropanoids 2 and 3 , along with two known lignans 4 and 5 , were isolated from the BuOH‐ and CHCl3‐soluble fractions of the whole plant of Daphne oleoides (Thymelaeaceae). The structures of the new compounds were established by spectroscopic techniques, including 2D NMR, as 4‐(β‐D ‐glucopyranosyloxy)‐9′‐hydroxy‐3,3′,4′‐trimethoxy‐7′,9‐epoxylignan ( 1 ), (1R,2S,5R,6R)‐6‐(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐2‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 2 ) and (1R,2S,5R,6S)‐2,6‐bis(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 3 ). The other lignans were identified as (+)‐pinoresinol O‐(β‐D ‐glucopyranoside) ( 4 ) and (+)‐medioresinol ( 5 ).  相似文献   

17.
From the stem bark of Tetrapleura tetraptera, two new oleanane‐type saponins, tetrapteroside A 3‐O‐{6‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐hydroxyocta‐2,7‐dienoyl]‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (1), and tetrapteroside B 3‐O‐{ β‐D ‐glucopyranosyl‐(1 → 2)‐6‐O‐[(E)‐feruloyl]‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (2), were isolated. Further extractions from the roots led to the isolation of four known oleanane‐type saponins. Their structures were elucidated by the combination of mass spectrometry (MS), one and two‐dimensional NMR experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Three new isomeric biisoflavonoids, dapholidins A–C ( 1 – 3 , resp.), have been isolated from the AcOEt‐soluble fraction of the MeOH‐soluble extract of the roots of Daphne oleoides, along with the known compounds daphwazirin ( 4 ), daphnetin 8‐Oβ‐D ‐glucopyranoside ( 5 ), daphnin ( 6 ), daphneticin 4″‐Oβ‐D ‐glucopyranoside ( 7 ), and 6,7‐dihydroxy‐3‐methoxy‐8‐[2‐oxo‐2H‐1‐benzopyran‐7‐(Oβ‐D ‐glucopyranosyl)‐8‐yl]‐2H‐1‐benzopyran‐2‐one ( 8 ). The structures of the new compounds were determined by spectroscopic analyses, including 1D‐ and 2D‐NMR.  相似文献   

19.
In order to provide the chemical markers for the quality control of herbal medicines, four diterpenoids, pseudolaric acids A and B (PAA and PAB), and their glucosides were isolated from the methanol extract of the Chinese herb Pseudolarix kaempferi using high‐speed counter‐current chromatography (HSCCC). The diphase solvent system was n‐hexane/EtOAc/MeOH/H2O which was used at two ratios (5:5:5:5 and 1:9:4:6 by volume) in the separation of pseudolaric acids and their glycosides, respectively. As a result, PAA (14 mg), PAB (129 mg), PAA‐O‐β‐D ‐glucopyranoside (8 mg, PAAG), and PAB‐O‐β‐D ‐glucopyranoside (42 mg, PABG) were obtained from 0.5 g of the crude extract. Their purities were determined to be above 97% by HPLC analysis. Their chemical structures were confirmed by 1H and 13C NMR analysis or HPLC comparison with the reference compounds.  相似文献   

20.
A chiral carthamin model (3S,3′S)‐1‐[5‐acetyl‐2,6‐diketo‐3‐C‐β‐d ‐glucopyranosylcyclohex‐4‐enylidene]‐1′‐[5′‐acetyl‐3′‐C‐β‐d ‐glucopyranosyl‐2′,3′,4′‐trihydroxy‐6′‐oxocyclohexa‐1′,4′‐dienyl]methane, in which two cinnamoyl groups were replaced by an acetyl group, was synthesized by the dimerization of (S)‐2‐acetyl‐4‐C‐(per‐O‐acetyl‐β‐d ‐glucopyranosyl)cyclohexadienone with glyoxylic acid, followed by peroxidase‐catalyzed oxidative decarboxylation and de‐O‐acetylation, or de‐O‐acetylation and peroxidase‐catalyzed oxidative decarboxylation. The corresponding total yields were 12.5% or 17.1% from 3‐C‐(per‐O‐acetyl‐β‐d ‐glucopyranosyl)phloroacetophenone, and the reaction pathway was identical to the biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号