首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

2.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) having well‐defined polymer molecular weight (Mn = 7.5–21.1 kg·mol?1) and molecular weight distribution (PDI = 1.05–1.20) by a graft‐to method. Toluene solutions containing 5 wt % free PBLG and variable amounts of PBLG‐functionalized SWCNTs (PBLG‐SWCNTs) form gels at room temperature. Differential scanning calorimetry (DSC) analysis reveals that the gelation occurs thermoreversibly, in accord with previous studies on the pristine PBLG/toluene gels. The heat of gel melting (ΔHm) is slightly elevated for the composite gels compared with the pristine gel, which suggests enhanced interactions between PBLGs in the former. But the gelation temperatures of the composites are unaffected by the presence of PBLG‐SWCNTs. Small‐angle X‐ray scattering (SAXS) analysis of the composite and pristine gels at different temperatures by the Guinier method suggests that PBLG‐SWCNTs promote interactions between PBLG rods, as indicated by the larger PBLG bundle size with increasing PBLG‐SWCNT content in the gel and the melt state. W/SAXS analysis of the dry gels reveals that PBLG‐SWCNTs induce significant changes in the PBLG packing order, resulting in a nematic phase, in contrast to a weakly ordered smectic C phase containing tilted PBLG rods that is observed in the pristine gel. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A homopolymer iPP and a series of propylene‐ethylene random copolymers with a content of ethylene from 7 to 21 mol % were used as matrices to prepare single‐walled carbon nanotube (SWCNT) nanocomposites in a range of SWCNT concentration from 0.15 to 1 wt %. The solution blending and melt‐ compression molding procedures were kept identical for all nanocomposites. The poly(propylenes) have crystallinities ranging from 70 to 10%, and serve to test the role of SWCNTs acting as nucleants to preserve in the nanocomposites the uniform dispersion of SWCNTs after sonication. The major role of polymer crystallinity is to mediate toward a more open and more connected SWCNT network structure. Fast nucleation and growth of high crystalline matrices on multiple sites along the surface of the nanotubes prevents SWCNT clustering, and entraps the SWCNT network between the semicrystalline structure reducing the driving force of nanotubes to curl and twist. Depletion of crystallites in the less crystalline matrices (<35% crystallinity) leads to curled and poorly connected nanotubes. A consequence of the gradual loss of SWCNT connectivity is a decreased electrical conductivity; however, the change with crystallinity is not linear. Conductivity decreases sharply with decreasing crystallinity for SWCNT contents near the percolation region, while for contents approaching the plateau region the electrical conductivity is less sensitive to matrix crystallinity. The percolation threshold decreases rapidly for polymers with <~30% crystallinity and slowly levels off at crystallinities >~40%. At SWCNT concentrations of 0.15 wt %, SEM images of nanocomposites with the highest crystallinity matrix indicate debundled and interconnected nanotubes, whereas more disconnected and curled SWCNTs remain in the lowest crystallinity nanocomposites. Electrical conductivity in the former is relatively high, whereas the latter are insulators. Also discussed is the nucleating effect of nanotubes and restrictions of the filler to polymer chain diffusion in the crystallization of the polymers. SEM images and Raman spectra in the radial breathing modes region (100–400 cm?1) are complementary tools to extract the quality and details of the SWCNT dispersion in the nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2084–2096, 2010  相似文献   

4.
The effect of single walled carbon nanotube (SWCNT) fillers on the low temperature thermal properties and curing behavior of SWCNT‐silicone nanocomposite are reported for the first time. The SWCNT‐silicone composites were prepared by different mixing procedures and characterized by differential scanning calorimetry (DSC). Solution mix, with the aid of sonication and soaking achieved better dispersion of SWCNTs in the silicone. The adding of SWCNTs in polymer seriously hindered the curing of silicone elastomer. The hindrance increased with increasing concentration of SWCNT and the quality of dispersion. The glass transition temperatures (Tg) of the nanocomposites were found to be independent of the SWCNT addition, although, the steps in the heat capacity (Δcp) of the glass transition were smaller with increasing SWCNTs concentration. The melt crystallization behavior was strongly dependent on the concentration and dispersion of SWCNT in the polymer. The cooling scan showed that the higher concentration and the better dispersion of SWCNTs in the silicone resulted in higher percentage of melt crystallization of this nanocomposite. The correlation of the change of thermal properties to the dispersion of CNT in polymer may be used to determine the quality of SWCNT dispersion in silicone polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1845–1852, 2008  相似文献   

5.
A series of pyrenyl‐terminated poly(γ‐benzyl‐l ‐glutamate)s (py‐PBLGs) with controlled polymer molecular weight (MW = 2.3–14.8 kg mol?1) and molecular weight distribution (PDI = 1.17–1.55) have been prepared from 1‐pyrenemethylamine hydrochloride‐mediated ring‐opening polymerization (ROP) of γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride (BLG‐NCA). FTIR analysis revealed that the py‐PBLG9 was conformationally heterogeneous with 35.0% α‐helix, 55.6% β‐sheet, and 9.4% random coil conformations in the solid state, whereas the py‐PBLG66 adopts 100% α‐helix conformation. Py‐PBLGs promote the dispersion of SWCNTs in organic solvents and in the PBLG solid through π–π interaction, as evidenced by the Raman spectroscopic studies. WAXD analysis revealed that the SWCNTs significantly affect the ordering of the py‐PBLG self‐assembly: the long range hexagonal packing of py‐PBLG66 rods is notably enhanced by the addition of SWCNTs, whereas the lamellar packing of py‐PGLG9 β‐sheets is weakened. In the hexagonal lattice, the SWCNTs are intercalated parallel to the py‐PBLG66 rods, in contrast to the normal orientation of the SWCNTs with respect to the extended py‐PBLG9 chains in the β‐sheets. The relative packing structure also affects the intermolecular interaction among the PBLGs: SWCNTs promote the interaction among the py‐PBLG9 chains packed in a lamellar structure and weaken the intermolecular interaction among the py‐PBLG66 columnar hexagonal array. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4489–4497  相似文献   

6.
Dendron‐like poly(γ‐benzyl‐L ‐glutamate)/linear poly(ε‐caprolactone)/dendron‐like poly(γ‐benzyl‐L ‐glutamate) triblock copolymers having 2m + 1 PBLG branches (denoted as PBLG‐Dm‐PCL‐Dm‐PBLG, m = 0, 1, 2, and 3) were for the first time synthesized by utilizing ring‐opening polymerization (ROP) and click chemistry. The bifunctional azide‐terminated PCL (N3‐PCL‐N3) was click conjugated with propargyl focal point PAMAM‐typed dendrons Dm to generate Dm‐PCL‐Dm, which was then used as macroinitiator for the ROP of BLG‐NCA monomer to produce the targeted PBLG‐Dm‐PCL‐Dm‐PBLG triblock copolymers. Their molecular structures and physical properties were characterized in detail by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and wide angle X‐ray diffraction (WAXD). The crystallinity of the central PCL segment within these copolymers is increasingly suppressed by the flanking PBLG wedges, whereas the PBLG segments gradually changed from a β‐sheet conformation to an α‐helix conformation with the increasing PBLG branches. These triblock copolymers formed thermoreversible organogels in toluene, and the dendritic topology of PBLG wedges controlled their critical gelation concentrations. The self‐assembled structure of organogels was further characterized by means of transmission electron microscopy, WAXD, and small‐angle X‐ray scattering. The fibers with flat ribbon morphology were clearly shown, and the gelation occurred through a self‐assembled nanoribbon mechanism. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 709–718, 2010  相似文献   

7.
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT‐g‐PE) were successfully synthesized via ethylene copolymerization with functionalized single‐walled carbon nanotubes (f‐SWCNTs) catalyzed by rac‐(en)(THInd)2ZrCl2/MAO. Here f‐SWCNTs, in which α‐alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT‐g‐PE were characterized by means of 1H NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field‐emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable‐like structure was formed in the SWCNT‐g‐PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT‐g‐PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f‐SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f‐SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT‐g‐PE were higher because of the chemical bonding between the f‐SWCNTs and PE chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5459–5469, 2007  相似文献   

8.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

9.
Summary: Self‐association behaviors of poly(γ‐benzyl L ‐glutamate)‐graft‐poly(ethylene glycol) (PBLG‐graft‐PEG) and its mixtures with PBLG homopolymer in aqueous media were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and nuclear magnetic resonance (NMR) spectroscopy. It was revealed that PBLG‐graft‐PEG could self‐assemble to form polymeric micelles with a core‐shell structure in the shape of spindle. The introduction of PBLG homopolymer not only decreases the critical micelle concentration, but also changes the morphology of the micelles.

The excitation fluorescence spectra of pyrene as a function of concentrations for the mixture of PBLG‐graft‐PEG with PBLG and a TEM image of the formed micelles.  相似文献   


10.
Solution property of poly(γ‐benzyl‐L ‐glutamate)‐b‐polyisoprene‐b‐poly(γ‐benzyl‐L ‐glutamate) (GIG copolymer) was studied by using dynamic light scattering and static light scattering for N,N‐dimethylformamide (DMF) solution and DMF/toluene mixed solutions. GIG copolymer proved to aggregate in DMF and under DMF‐rich condition, that is, high‐polar region. The aggregate decreased in size, and completely disappeared under toluene‐rich condition, that is, low‐polar region. The correlation between solubility parameter and aggregate size of GIG copolymer in the DMF/toluene solution systems quantitatively demonstrated how strongly polarity caused by hydrogen bond made an impact on the aggregation behavior. Because the main driving force to the aggregation under DMF‐rich condition originates with polyisoprene (PIP) blocks, the aggregate in DMF is considered to be a core‐shell micelle consisting of flexible PIP core surrounded by rigid poly(γ‐benzyl‐L ‐glutamate) (PBLG) shell. The values of dimensionless parameter ρ, defined as the ratio of radius of gyration 〈S21/2 to hydrodynamic radius RH, revealed that a single chain of GIG copolymer had the form of rigid rod with flexibility, that is, once‐broken rod, caused by the incorporation of a flexible PIP chain between two rigid PBLG rods in the DMF/toluene solution system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1740–1748, 2010  相似文献   

11.
Theoretical investigation on local electronic structure and stability of the π–π stacking interaction of pyrazinamide (PZA) with armchair (5,5) and zigzag (9,0) single‐walled carbon nanotubes (SWCNTs) is performed using density functional theory (DFT). PZA is physisorbed onto nanotube sidewall through interaction of π orbitals of PZA and SWCNT and the enhanced structural stability of PZA/SWCNT systems is due to weak side‐on rather than the head‐on π‐interactions. The physisorption of PZA onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region and π–π stacked interactions is stronger in (9,0) SWCNT compared to (5,5) SWCNT. The density of states (DOS) analysis show that PZA contributes toward the enhancement of electronic states. Projected DOS and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than PZA. In addition, hybrid DFT calculation which includes the dispersion correction is employed to explain the non‐covalent π–π stacking interaction between PZA and SWCNT. The local density approximation and GGA results are compared with DFT‐D to explain near about accurately the weak nonbonded van der Waals interactions between PZA and SWCNTs. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Throughout this work, the synthesis, thermal as well as proton conducting properties of acid doped heterocyclic polymer were studied under anhydrous conditions. In this context, poly(1‐vinyl‐1,2,4‐triazole), PVTri was produced by free radical polymerization of 1‐vinyl‐1,2,4‐triazole with a high yield. The structure of the homopolymer was proved by FTIR and solid state 13C CP‐MAS NMR spectroscopy. The polymer was doped with p‐toluenesulfonic acid at various molar ratios, x = 0.5, 1, 1.5, 2, with respect to polymer repeating unit. The proton transfer from p‐toluenesulfonic acid to the triazole rings was proved with FTIR spectroscopy. Thermogravimetry analysis showed that the samples are thermally stable up to ~250 °C. Differential scanning calorimetry results illustrated that the materials are homogeneous and the dopant strongly affects the glass transition temperature of the host polymer. Cyclic voltammetry results showed that the electrochemical stability domain extends over 3 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Charge transport relaxation times were derived via complex electrical modulus formalism (M*). The temperature dependence of conductivity relaxation times showed that the proton conductivity occurs via structure diffusion. In the anhydrous state, the proton conductivity of PVTri1PTSA and PVTri2PTSA was measured as 8 × 10?4 S/cm at 150 °C and 0.012 S/cm at 110 °C, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1016–1021, 2010  相似文献   

13.
We present here the evidence for the origin of dc electrical conduction and dielectric relaxation in pristine and doped poly(3‐hexylthiophene) (P3HT) films. P3HT has been synthesized and purified to obtain pristine P3HT polymer films. P3HT films are chemically doped to make conducting P3HT films with different conductivity level. Temperature (77–350 K) dependent dc conductivity (σdc) and dielectric constant (ε′(ω)) measurements on pristine and doped P3HT films have been conducted to evaluate dc and ac electrical conduction parameters. The relaxation frequency (fR) and static dielectric constant (ε0) have been estimated from dielectric constant measurements. A correlation between dc electrical conduction and dielectric relaxation data indicates that both dc and ac electrical conductions originate from the same hopping process in this system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1047–1053, 2010  相似文献   

14.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   

15.
Bionanocomposites of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (P3HB3HHx) (13 % by mol of HHx) with multiwalled carbon nanotubes (MWCNTs) were prepared to obtain semiconductive nanocomposites for potential applications as scaffolds for nerve repair. The effect of the polymer/nanotube interface on the composite properties was studied using oxidized (oxi‐MWCNTs) and surface modified MWCNTs with low‐molecular weight P3HB3HHx (pol‐MWCNTs), in a ratio from 0.3 to 1.2 wt % for each type of MWCNTs employed. Morphology and conductive properties of the composites indicated a good interaction between pol‐MWCNTs and the polymer matrix. Composites with improved conductivity were obtained with only 0.3 wt % of pol‐MWCNTs added. However, agglomeration and lower conductivity was observed for samples with oxi‐MWCNTs. Cell viability studies carried out with neurospheres showed that samples with 1.2 wt % of pol‐MWCNTs are not cytotoxic and, in addition favors the neurospheres growth on the composite surface. Considering the electrical properties and biological behavior, nanocomposites of P3HB3HHx and pol‐MWCNTs are promising substrates for the regeneration of nerve tissue. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 349–360  相似文献   

16.
Poly(benzyl‐L ‐glutamate) (PBLG) macromonomers were synthesized by N‐carboxyanhydride (NCA) polymerization initiated with 4‐vinyl benzylamine. MALDI‐ToF analysis confirmed the presence of styrenic end‐groups in the PBLG. Free‐radical and RAFT polymerization of the macromonomer in the presence of divinyl benzene produced star polymers of various molecular weights, polydispersity, and yield depending on the reaction conditions applied. The highest molecular weight (Mw) of 10,170,000 g/mol was obtained in a free‐radical multibatch approach. It was shown that the PBLG star polymers can be deprotected to obtain poly(glutamic acid) star polymers, which form water soluble pH responsive nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
A supramolecular hybrid is prepared by the supramolecular surface modification of single‐walled carbon nanotube (SWCNT) with cationic β‐cyclodextrin‐tethered ruthenium complexes through a spacer molecule that contains both an adamantane and a pyrene moiety. By employing the supramolecular hybrid, spatially controllable DNA condensation along the SWCNT skeleton is achieved by anchoring cationic ruthenium complexes on the surface. Furthermore, because of the unique physiological properties of SWCNTs, the cationic supramolecular hybrid can be used as a nonviral gene delivery system with the ruthenium complexes as a fluorescent probe to monitor uptake of DNA by cells.  相似文献   

18.
19.
Macroinitiator‐amino terminated poly(ethylene glycol) (PEG) (NH2‐PEO‐NH2) was prepared by converting both terminal hydroxyl groups of PEG to more reactive primary amino groups. The synthetic route involved reactions of chloridize, phthalimide and finally hydrazinolysis. Furthermore, poly(γ‐benzyl‐L ‐glutamate)‐poly(ethylene oxide)‐poly(γ‐benzyl‐L ‐glutamate) (PBLG‐PEO‐PBLG) triblock copolymer was synthesized by polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (Bz‐L‐GluNCA) using NH2‐PEO‐NH2 as macroinitiator. The resultant NH2‐PEO‐NH2 and triblock copolymer were characterized by FT‐IR, 1H‐NMR and gel permeation chromatography (GPC) techniques. The results demonstrated that the degree of amination of the NH2‐PEO‐NH2 could be up to 1.95. The molecular weight of the PBLG‐PEO‐PBLG triblock copolymer could be adjusted easily by controlling the molar ratio of Bz‐L ‐Glu NCA to the macroinitiator NH2‐PEO‐NH2. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Polyaniline (PANi)‐grafted multiwalled carbon nanotube (MWNT) composite is prepared by a two‐step reaction sequence. MWNT is first functionalized with 4‐aminobenzoic acid in polyphosphoric acid/phosphorous pentoxide as a “direct” Friedel‐Crafts acylation reaction medium. The resultant 4‐aminobenzoyl‐functionalized MWNT is then treated with aniline using ammonium persulfate/aqueous hydrochloric acid to promote a chemical oxidative polymerization, leading to PANi‐grafted MWNT composite. The resultant composite is characterized by elemental analysis, Fourier‐transform infrared spectroscopy, wide‐angle X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, UV–vis absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and electrical conductivity measurement. The thermooxidative stability and electrical conductivity of PANi‐grafted MWNT composite are improved compared to those of PANi. Specifically, the electrical conductivity of PANi‐grafted MWNT is improved 10–900 times depending upon the level of doping. The capacitance of the composite is also greatly enhanced. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3103–3112, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号