首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Novel multiblock poly(ester amide)s containing poly(L ‐lactide) and cycloaliphatic amide segments were synthesized from telechelic oligomer of α,ω‐hydroxyl terminated poly(L ‐lactide), 1,3‐cyclohexylbis(methylamine), and sebacoylchloride by the “two‐step” interfacial polycondensation method. The blocky nature of PEAs was established by FTIR and 1H NMR spectroscopies. The effect of relative content of ester and amide segments on the crystallization nature of PEAs was investigated by WAXD and DSC analyses. PEAs having lower content of PLLA, PEA 1 and PEA 2, showed a crystallization pattern analogous to polyamides, whereas PEA 3, having higher content of PLLA, showed two crystalline phases characterized by polyester and polyamide segments. Random nature of PEAs was observed from single Tg values. Biodegradation studies using the enzyme lipase from Candida Cylindracea showed higher degradation rate for PEA 3 than that for PEA 1 and PEA 2. FTIR, 1H NMR, and DSC analyses of the degraded products indicated the involvement of ester linkages in the degradation process. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3250–3260, 2006  相似文献   

2.
Poly(ester amide)s (PEAs) comprising α‐amino acids, diols, and diacids are promising materials for biomedical applications such as tissue engineering and drug delivery because of their tunability and potential for either hydrolytic or enzymatic degradation. Although a number of PEAs of different compositions have been reported, there is a significant need for the incorporation of amino acids with functional side chains. This will allow for the conjugation of drugs or cell signaling molecules in tissue engineering scaffolds, thus expanding the potential applications of these materials. The objective of this work was the incorporation of l ‐lysine into PEAs to provide functionalizable pendant amine groups. Thus, varying percentages of lysine were incorporated into PEAs comprised of l ‐phenylalanine, 1,4‐butanediol, and succinic acid by tuning the ratio of ε‐protected‐l ‐lysine and l ‐phenylalanine derived monomers. The polymers were characterized by nuclear magnetic resonance spectroscopy, infrared spectroscopy, size exclusion chromatography, and differential scanning calorimetry. The lysine ε‐protecting group was removed, then the reactivity of the pendant amines was demonstrated by reaction with amino acid and tri(ethylene glycol) derivatives. The degradation of thin films of polymers were studied using scanning electron microscopy and the incorporation of lysine was found to significantly accelerate both the hydrolytic and enzymatic degradation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6376–6392, 2008  相似文献   

3.
The purpose of this research was to synthesize new regular poly(ester amide)s (PEAs) consisting of nontoxic building blocks like hydrophobic α‐amino acids, α,ω‐diols, and aliphatic dicarboxylic acids, and to examine the effects of the structure of these building block components on some physico‐chemical and biochemical properties of the polymers. PEAs were prepared by solution polycondensation of di‐p‐toluenesulfonic acid salts of bis‐(α‐amino acid) α,ω‐alkylene diesters and di‐p‐nitrophenyl esters of diacids. Optimal conditions of this reaction have been studied. High molecular weight PEAs (Mw = 24,000–167,000) with narrow polydispersity (Mw/Mn = 1.20–1.81) were prepared under the optimal reaction conditions and exhibited excellent film‐forming properties. PEAs obtained are mostly amorphous materials with Tg from 11 to 59°C. α‐Chymotrypsin catalyzed in vitro hydrolysis of these new PEA substrates was studied to assess the effect of the building blocks of these new polymers on their biodegradation properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 391–407, 1999  相似文献   

4.
Stereoregular poly(ester amide)s (PEAs) were prepared by the polycondensation method using naturally occurring D ‐xylose and aromatic diacids as the starting materials. The polymers were characterized by elemental analysis, GPC, IR, and 1H‐ and 13C NMR spectroscopies. Thermal and X‐ray diffraction studies revealed them to be mainly amorphous. The polymers are hydrophilic and their degradation studies were carried out at 37 and 80 °C in buffered salt solution at pH 8. The degradation study was monitored by mass loss, GPC, IR, and NMR spectroscopies. The hydrolytic degradation of these PEAs occurred rapidly by hydrolysis of the ester functions to a final compound, which maintained the amide functions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Poly(ester amide)s (PEAs) are emerging as promising materials for a wide range of biomedical applications due to their potential for both hydrolytic and enzymatic degradation, as well as the ease with which their properties can be tuned by the choice of monomers. The incorporation of pendant functional handles along the PEA backbone has the potential to further expand their applications by allowing the charge and hydrophilicity of the polymers to be altered, and facilitating the conjugation of active molecules such as drugs, targeting groups, and cell signaling molecules. Described here is a simple and versatile strategy based on orthogonal protecting groups, by which L ‐lysine and L‐ aspartic acid can be incorporated into several families of PEAs based on monomers including the diacids succinic and terephthalic acid, the diols 1,4‐butanediol and 1,8‐octanediol, and the amino acids L‐ alanine and L‐ phenylalanine. All polymers were thoroughly characterized by nuclear magnetic resonance spectroscopy, infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. It was demonstrated that the side chain protecting groups could be readily removed, allowing the pendant amines or carboxylic acids to be functionalized. In particular, the carboxylic acid groups on a polymer containing L‐ aspartic acid units were converted to N‐hydroxysuccinimidyl esters, providing a useful template for further derivatization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3757–3772, 2009  相似文献   

6.
The synthesis of α-amino acid L-leucine (Leu) based high-molecular-weight and biodegradable unsaturated poly(ester-amide)s (PEAs) was reported. Amino acid L-phenylalanine (Phe) was used to synthesize some copolymers for a comparative study. The syntheses of three types of new unsaturated PEA polymers were explored – (i) Unsaturated PEA homopolymers (UPEAs) composed of fumaric acid, aliphatic diol and one alpha-amino acid: L-Leu or L-Phe; (ii) L-Leu-based unsaturated-saturated copolymers (USPEAs) composed of aliphatic diol, fumaric and saturated fatty diacid, and (iii) L-Leu- and L-Phe-based copolymers (co-UPEAs) composed of 100% fumaric acid, aliphatic diol and combinations of both amino acids. Many of the targeted unsaturated polymers were soluble in common organic solvents and showed good film-forming property. The unsaturated PEA polymers were further chemically modified into functional derivatives and subjected to thermal and photochemical transformations (curing) that substantially expand material properties and, hence, the scopes of potential applications as absorbable surgical devices and drug carriers.  相似文献   

7.
Four novel chiral phenylacetylenes having an L ‐amino alcohol residue and two hydroxymethyl groups were synthesized and polymerized by an achiral catalyst ((nbd)Rh+6‐(C6H5)B?(C6H5)3]) or a chiral catalytic system ([Rh(nbd)Cl]2/(S)‐ or (R)‐phenylethylamine ((S)‐ or (R)‐PEA)). The two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects at wavelengths around 430 nm. This observation indicated that they had an excess of one‐handed helical backbones. Positive and negative Cotton effects were observed only for the polymers having an L ‐valinol residue produced by using (R)‐ and (S)‐PEA as a cocatalyst, respectively, although the monomer had the same chirality. Even when the achiral catalyst was used, the two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects despite the long distance between the chiral groups and the main chain. We have found the first example of a new type of chiral monomer, that is, a chiral phenylacetylene monomer having an L ‐amino alcohol residue and two hydroxy groups that was suitable for both modes of asymmetric polymerization, that is, the helix‐sense‐selective polymerization ( HSSP ) with the chiral catalytic system and the asymmetric‐induced polymerization ( AIP ) with the achiral catalyst. The other two monomers having L ‐alaninol and L ‐tyrosinol were found to be unsuitable to neither HSSP nor AIP because of their polymers' low solubility. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (4,4′‐carbonyldiphathalic anhydride) was reacted with L ‐leucine in a mixture of acetic acid and pyridine (3 : 2), and the resulting imide‐acid [N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid] was obtained in quantitative yield. The compound was converted to the N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid chloride by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride with several aromatic diamines such as 4,4′‐diaminodiphenyl methane, 2,4‐diaminotoluene, 4,4′‐sulfonyldianiline, p‐phenylenedi‐amine, 4,4′‐diaminodiphenylether, and m‐phenylenediamine was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as O‐cresol. The polymerization reactions proceeded rapidly compared with the conventional solution polycondensation and were completed within 6 min, producing a series of optically active poly(amide‐imide)s with a high yield and an inherent viscosity of 0.37–0.57 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 177–186, 2001  相似文献   

9.
A novel multiresponsive poly(ether tert‐amine) (PEA) was synthesized by nucleophilic addition/ring‐opening reaction of commercial poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and di‐epoxy and di‐amine monomer. The process of synthesis was very simple and green in ethanol as reactive media. These PEAs exhibit sharp response to temperature, pH, and ionic strength, with adjustable and sharp phase transitions in the range of 27–100 °C. The lower critical solution temperature (LCST) of PEA's aqueous solution presents a linear relationship to the PEO content (y = 35.7 + x), indicating well‐tunable LCST. The concentration of PEA has no obvious effect on LCST. Therefore, PEA will be potential in applications of drug delivery, separation, and biotechnology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1292–1297, 2009  相似文献   

10.
《先进技术聚合物》2018,29(1):490-496
Novel poly(ether‐co‐amide) block copolymers (PEA) with polyamide‐6 as hard segments and different polyether (polyoxytetramethylene glycol [PTMG]/polyethylene glycol [PEG]) as soft segments were prepared via reactive processing. The chemical structure, crystalline properties, mechanical properties, water resistance, and thermal stability of as‐prepared PEAs were extensively studied by Fourier transform infrared spectroscopy, X‐ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, tensile testing, water contact angle, water absorption, and thermal gravity analysis. Fourier transform infrared spectroscopy confirmed the chemical structure and composition of PEAs. The X‐ray diffraction and differential scanning calorimetry showed that PEAs consist of obvious crystalline polyamide‐6 hard segments and that the crystalline structure of PEG will be significantly changed with the addition of PTMG. Dynamic mechanical analysis and tensile testing showed that the obtained PEAs exhibit classical elastomeric rubber plateau and tensile behavior. Meanwhile, the introduction of PTMG will improve the mechanical properties of PEAs. PEA with PEG as soft segments exhibited extremely surface hydrophilicity and high water absorption of 127%; the increasing of PTMG content in soft segments will reduce the surface hydrophilicity and improve the water resistance. In addition, the obtained PEAs exhibited good thermal stability, which will meet requirement of multiple processing.  相似文献   

11.
Epiclon [3a,4,5,7a‐tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione or 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] was reacted with L ‐leucine in acetic acid, and the resulting imide acid ( 3 ) was obtained in a high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative 3 by a reaction with oxalyl chloride in dry carbon tetrachloride. The polycondensation reaction of 4 with several aromatic diamines, such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene, was developed with a domestic microwave oven in the presence of a small amount of a polar organic medium such as N‐methylpyrrolidone. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide imide)s with moderate yields and inherent viscosities of 0.12–0.19 dL/g were obtained. All of these polymers were fully characterized by IR, elemental analysis, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide imide)s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1077–1090, 2003  相似文献   

12.
Biodegradable and thermosensitive polyaspartamide derivatives containing pendant azide groups P(Asp‐Az)X‐HPAs were synthesized from poly(l ‐succinimide) via the ring‐opening reaction with 2‐azidoethylamine (Az) and 5‐hydroxypentylamine (HPA). Then hydrophobic phenethyl (PEA) and imidazole (IMZ) moieties were introduced successfully with very high reaction efficiency above 90% to the side chains of P(Asp‐Az)X‐HPA by click reaction to obtain thermoresponsive polyaspartamide derivatives containing pendant aromatic rings P(Asp‐Az)X‐HPA‐PEAs and the thermo/pH‐responsive polyaspartamide derivatives containing pendant imidazole rings P(Asp‐Az)X‐HPA‐IMZs, respectively. The thermoresponsive behaviors of P(Asp‐Az)X‐HPA‐PEAs and P(Asp‐Az)X‐HPA‐IMZs were confirmed by dynamic light scattering (DLS) and transmittance measurements, and the cloud point can be tuned by designed amounts of azide groups and can be further adjusted by the grafting molar percentage of hydrophobic phenethyl or imidazole moieties to the side chains of P(Asp‐Az)X‐HPA via click chemistry. The pH‐responsive behavior of P(Asp‐Az)X‐HPA‐IMZs can also be tuned. These results indicate that the obtained polyaspartamide‐based functional polymers can be further functionalized with hydrophilic long PEG chain and/or targeted moieties via click chemistry for drug delivery. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1296–1303  相似文献   

13.
Syntheses of copolymers composed of optically active depsipeptides (3,6‐dimethyl‐2,5‐morphorinedione) and L ‐lactide—poly(L ‐3,L ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide), poly(L ‐3,DL ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide), and poly(L ‐3,D ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide)—were examined in an effort to improve the biodegradability and physical properties of homopoly(L ‐lactide). In degradation tests, the copolymers composed of 3,6‐dimethyl‐2,5‐morphorinedione and lactide in the ratios 10/90 to 13/87 exhibited high biodegradability toward proteinase K, whereas a homopolymer, poly(L ‐lactide), exhibited very poor biodegradability (only 50% after 200 h). These polymers composed of 3,6‐dimethyl‐2,5‐morphorinedione/L ‐lactide in 11/89 to 13/87 ratios also degrades rapidly after being in compost for 30 days. The resulting copolymers, however, showed relatively low elongation properties. Therefore, ternary copolymerizations of L ‐3,DL ‐6‐dimethyl‐2,5‐morphorinedione, ?‐caprolactone, and L ‐lactide were explored in an effort to improve their mechanical properties, especially the elongation, and sufficient results were obtained with an approximate ratio of 3/11/86. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 302–316, 2002  相似文献   

14.
A series of novel biodegradable unsaturated poly(ester amide)s (UPEAs) were synthesized through the solution polycondensation of two unsaturated monomers, di‐p‐nitrophenyl fumarate and L ‐phenylalanine 2‐butene‐1,4‐diol diester p‐toluene sulfonate, and four other saturated monomers in different combinations. The UPEAs were obtained in fairly good yields with N,N‐dimethylacetamide (DMA) as the solvent. The number‐average and weight‐average molecular weights of the UPEAs, measured by gel permeation chromatography, ranged from 10 to 30 kg/mol, they had a rather narrow molecular weight distribution of 1.40. The chemical structures of the novel biodegradable UPEAs were confirmed by both IR and NMR spectra. The UPEAs had higher glass‐transition temperatures than saturated PEAs of similar structures, and their glass‐transition temperatures were affected more by the CC double bond located in the diamide part than by those in the diester part. The solubility of the polymers was poor in water but better in DMA and dimethyl sulfoxide. With the availability of these inherent CC double bonds in the UPEA backbones, these UPEAs have the functionality of CC bonds, such as photochemical reactivity or the ability to react with or be modified by other bioactive or other environmentally sensitive compounds, and this can easily extend their applications to biomedical and pharmaceutical areas. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1463–1477, 2005  相似文献   

15.
A series of activated urethane‐type derivatives of α‐amino acids were synthesized and applied to polypeptide synthesis. The urethane used herein, N‐(4‐nitrophenoxycarbonyl)‐α‐amino acids 1 , were synthesized by N‐carbamoylation of γ‐benzyl‐L ‐glutamate, β‐benzyl‐L ‐aspartate, L ‐leucine, L ‐phenylalanine, and L ‐proline, with 4‐nitrophenyl chloroformate. When 1 was dissolved in N,N‐dimethylacetamide (DMAc) and heated at 60 °C, it was smoothly converted into the corresponding polypeptides with releasing 4‐nitrophenol and carbon dioxide. Spectroscopic analyses of the obtained polypeptides revealed that they were comparable with the authentic polypeptides synthesized by the ring‐opening polymerizations of amino acid N‐carboxyanhydrides (NCAs). Besides the successful polycondensations of a series of 1 , their polycondensations of 1a and other 1 were also successfully carried out to obtain the corresponding statistic copolypeptides. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2525–2535, 2008  相似文献   

16.
The colorimetric detection of anionic species has been studied for α‐amino acid‐conjugated poly(phenylacetylene)s, which were prepared by the polymerization of the ethyl esters of N‐(4‐ethynylphenylsulfonyl)‐L ‐alanine, L ‐isoleucine, L ‐valine, L ‐phenylalanine, L ‐aspartic acid, and L ‐glutamic acid using Rh+(2,5‐norbornadiene)[(η6‐C6H5)B?(C6H5)3] as the catalyst in CHCl3. The one‐handed helical conformations of all the sulfonamide‐functionalized polymers were characterized by Cotton effects in the circular dichroism spectra. The addition of anions with a relatively high basicity, such as tetra‐n‐butylammonium acetate and fluoride, induced drastic changes in both the optical and chiroptical properties. On the other hand, anions with a relatively low basicity, such as tetra‐n‐butylammonium nitrate, azide, and bromide, had essentially no effects on the helical conformation of all the sulfonamide‐functionalized polymers. The anion signaling property of the sulfonamide‐functionalized polymers possessing α‐amino acid moieties was significantly affected by the installed residual amino acid structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1683–1689, 2010  相似文献   

17.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   

18.
The crystal structures of molybdocene‐amino acid compounds of the type [Cp2MoIV(κN, κO‐AA)]+Cl·xH2O with AA = D ‐phenylalaninato (x = 1.5), DL ‐leucinato (x = 2) and DL ‐valinato (x = 1) have been determined (Cp = η5‐C5H5). The compounds feature an almost planar, five‐membered chelate ring of the aminocarboxylate moiety (deprotonated amino acid) with the molybdenum atom. In the phenylalaninato complex π‐stacking between the phenyl rings is found. The complexes were proven kinetically stable at pH < 1 for at least 24 h.  相似文献   

19.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

20.
This article deals with (1) synthesis of novel cyclic carbonate monomer (2‐oxo [1,3]dioxan‐5‐yl)carbamic acid benzyl ester (CAB) containing protected amino groups; (2) ring‐opening copolymerization of the cyclic monomer with L ‐lactide (LA) to provide novel degradable poly(ester‐carbonate)s with functional groups; (3) removal of the protective benzyloxycarbonyl (Cbz) groups by catalytic hydrogenation to afford the corresponding poly(ester‐co‐carbonate)s with free amino groups; (4) grafting of oligopeptide Gly‐Arg‐Gly‐Asp‐Ser‐Tyr (GRGDSY, abbreviated as RGD) onto the copolymer pendant amino groups in the presence of 1,1′‐carbonyldiimidazole (CDI). The structures of P(LA‐co‐CA/RGD) and its precursor were confirmed by 1H NMR analysis. Cell experiments showed that P(LA‐co‐CA/RGD) had improved adhesion and proliferation behavior. Therefore, the novel RGD‐grafted block copolymer is promising for cell or tissue engineering applications. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7022–7032, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号