首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A well‐defined multiarm star copolymer poly(styrene)‐b‐poly(ε‐caprolactone) (PSOH‐b‐PCL) with an average number of PCL arms per molecule of 60 has been prepared. 4‐Chloromethyl styrene (4‐CMS) was polymerized by means of atom transfer radical polymerization (ATRP) to obtain a hyperbranched poly(styrene) with chlorines as terminal groups. Subsequently, chlorines were substituted by reaction with diisopropanolamine (DIPA) to give the hydroxyl‐ended derivative. Finally, the hydroxyl‐ended hyperbranched poly(styrene) has been used as a macroinitiator core to polymerize ε‐caprolactone by means of cationic ring‐opening polymerization so as to obtain the star copolymer. In a second step, PSOH‐b‐PCL was used as reactive modifier of diglycidylether of bisphenol A formulations cured by 1‐methyl imidazole (1‐MI) obtaining nanostructured thermosets. The curing process was studied by dynamic scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). By rheometry, the effect of this new polymer topology on the complex viscosity (η*) of the reactive mixture and on the gelation process was also analyzed. The thermomechanical characteristics of the modified materials were determined. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Various polysiloxanes bearing chlorobenzyl side groups were synthesized by the hydrolytic polycondensation of the 73:27 mol/mol mixture of [2‐(4‐chloromethylphenyl)ethyl] methyldichlorosilane and [1‐(4‐chloromethylphenyl)ethyl] methyldichlorosilane followed by the cationic equilibration or coequilibration with octamethylcyclotetrasiloxane, D4. 1,3‐Divinyltetramethyl‐disiloxane was used as the chain end blocker to obtain a vinyl–Si ended chlorobenzyl‐substituted polysiloxane. In some cases, the polymer was additionally treated with dimethylvinylchlorosilane to achieve full substitution of chain ends by the vinyl group. Cohydrolysis of the chlorobenzylic monomer mixture with dimethyldichlorosilane was also practiced. Multiblock copolymers were obtained by polyhydrosilylation of the α,ω‐divinylsilyl chlorobenzyl‐substituted polysiloxanes with α,ω‐dihydrosilyl polydimethylsiloxanes. All these polymers and copolymers containing reactive chlorobenzylic groups were demonstrated to be convenient precursors of functional polysiloxanes of potential practical use. Some specific functional groups, such as quaternary ammonium salt groups of biocidal activity or azobenzene groups making the polymer sensitive to external stimuli by light, may be readily generated on polysiloxane under mild conditions. The chlorobenzylic substituted polysiloxanes may be also used as macroinitiators of the atom transfer radical polymerization, to obtain polysiloxanes with grafted organic polymers, such as styrene, 4‐chloromethylstyrene, and n‐butylacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1682–1692, 2004  相似文献   

4.
In this article, we report an efficient method for the synthesis of thymine‐functionalized polystyrene microspheres. First, poly(styrene‐co‐4‐chloromethylstyrene) copolymers slightly crosslinked with divinylbenzene were synthesized in batch free‐radical emulsion copolymerization. Microspheres with a particle size of ~40–70 nm were obtained with greater than 99% conversion. The chloromethylstyrene (CMS) groups were then converted into thymylmethylstyrene (TMS) in a two‐phase system with greater than 80% efficiency, and up to a 45 mol % thymine loading was achieved. The functionalized microspheres were characterized by elemental analysis, Fourier transform infrared, and X‐ray photoelectron spectroscopy. The analyses revealed partial hydrolysis of the CMS functionalities, yielding hydroxymethyl functional groups in addition to the thymine functionalities. These copolymers have potential applications in biotechnology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5545–5553, 2005  相似文献   

5.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

6.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A three‐step process, combining nitroxide‐mediated polymerization (NMP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization techniques, for synthesizing well‐defined amphiphilic and thermosensitive graft copolymers with fluorescence poly(styrene‐co‐(p‐chloromethylstyrene))‐g‐poly(N‐isopropylacrylamide) (P(St‐co‐(p‐CMS))‐g‐PNIPAAM), was conducted. Firstly, the NMP of styrene (St) and p‐chloromethylstyrene (p‐CMS) were carried out using benzoyl peroxide (BPO) as the initiator to obtain the random copolymers of P(St‐co‐(p‐CMS)). Secondly, the random copolymers were converted into macro‐RAFT agents with fluorescent carbazole as Z‐group through a simple method. Then the macro‐RAFT agents were used in the RAFT polymerization of N‐isopropylacrylamide (NIPAAM) to prepare fluorescent amphiphilic graft copolymers P(St‐co‐(p‐CMS))‐g‐PNIPAAM with controlled molecular weights and well‐defined structures. The copolymers obtained were characterized by gel permeation chromatography (GPC), 1H nuclear magnetic resonance (NMR) spectroscopy, and FT‐IR spectroscopy. The size of self‐assembly micelles of the resulting graft copolymers in deionized water was studied by high performance particle sizer (HPPS), the results showed that the Z‐average size of the micelles increased with the increase of molecular weights of PNIPAAM in side chains. The aqueous solution of the micelles prepared from P(St‐co‐(p‐CMS))‐g‐PNIPAAM using a dialysis method showed a lower critical solution temperature (LCST) at ~ 27.5 °C, which was below the value of NIPAAM homopolymer (32 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5318–5328, 2007  相似文献   

8.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

9.
A well‐defined and monofunctional poly(3‐hexylthiophene)‐based (P3HT) macroinitiator has been obtained through a clean, simple, and an efficient multistep synthesis process. The macroinitiator is obtained via intermolecular radical 1,2‐addition onto an ω‐acrylate‐terminated P3HT macromonomer. In a second step, well‐defined rod‐coil block copolymers were obtained by nitroxide‐mediated radical polymerization (NMRP) using the so‐called Blocbuilder®. The polymerization was found to be controlled with various monomers such as styrene, isoprene, 4‐vinylpyridine, or methyl acrylate. This process constitutes a very promising way to obtain versatile and clean materials for organic electronics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used as a facile and quantitative method for modifying end‐groups on an N‐isopropylacrylamide (NIPAm) homopolymer. A well‐defined precursor of polyNIPAm (PNIPAm) was prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in DMF at 70 °C using the 1‐cyano‐1‐methylethyl dithiobenzoate/2,2′‐azobis(2‐methylpropionitrile) chain transfer agent/initiator combination yielding a homopolymer with an absolute molecular weight of 5880 and polydispersity index of 1.18. The dithiobenzoate end‐groups were modified in a one‐pot process via primary amine cleavage followed by phosphine‐mediated nucleophilic thiol‐ene click reactions with either allyl methacrylate or propargyl acrylate yielding ene and yne terminal PNIPAm homopolymers quantitatively. The ene and yne groups were then modified, quantitatively as determined by 1H NMR spectroscopy, via radical thiol‐ene and radical thiol‐yne reactions with three representative commercially available thiols yielding the mono and bis end functional NIPAm homopolymers. This is the first time such sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used in polymer synthesis/end‐group modification. The lower critical solution temperatures (LCST) were then determined for all PNIPAm homopolymers using a combination of optical measurements and dynamic light scattering. It is shown that the LCST varies depending on the chemical nature of the end‐groups with measured values lying in the range 26–35 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3544–3557, 2009  相似文献   

11.
Aliphatic hyperbranched poly(amide‐imide) was facilely prepared by employing a functional thiolactone‐maleimide monomer. Highly efficient, selective and quantitative properties of amine‐maleimide Michael addition and aminolysis of a thiolactone guaranteed the generation of an ABB' thiol‐yne intermediate without side products, followed by consecutive thiol‐yne click reaction in one‐pot. The hyperbranched structure of the poly(amide‐imide) was confirmed by NMR spectroscopy and triple‐detector GPC/SEC analysis. Additionally, due to the presence of aminosuccinimide fluorophores and intrinsic physical property of hyperbranched polymers, this aliphatic hyperbranched poly(amide‐imide) possessed solvent‐dependent emission and presented good solubility in various organic solvents. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2053–2060  相似文献   

12.
Novel liquid‐crystalline alternating conjugated copolymers [ P(P(6)CN‐alt‐Cz) and P(P(6)CN‐alt‐MeP) ] with phenylene and carbazolylene or phenylene with methyl substitution onto the main chain have been synthesized through palladium‐catalyzed Suzuki coupling reactions. The influence of the incorporation of carbazolylene and the substituted phenylene into the main chain on the thermal, mesomorphic, and luminescent properties has been investigated by Fourier transform infrared spectroscopy, thermogravimetry, differential scanning calorimetry, polarized optical microscopy, ultraviolet–visible spectroscopy, photoluminescence (PL), and cyclic voltammetry. These polymers show highly thermal stability, losing little of their weights when heated to 360 °C. The conjugated copolymers exhibit liquid crystallinity at elevated temperature. The existence of the chromophoric terphenyl core endows the copolymers with high PL and the polymer P(P(6)CN‐alt‐Cz containing carbazolylene unit can emit more pure blue light. All the copolymer films with low band gaps about 2.3–2.4 eV undergo reversible oxidation and reduction processes, significantly lower than the band gap of poly(p‐phenylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 434–442, 2010  相似文献   

13.
Novel amphiphilic hyperbranched‐upon‐dendritic polymers with a dendritic polyester core, a linear poly(ε‐caprolactone) (PCL) inner shell, and a hyperbranched polyglycerol outer shell have been prepared. The structures of the hyperbranched‐upon‐dendritic polymers were characterized by using NMR spectra. The critical aggregating concentrations (CACs) of those amphiphilic hyperbranched‐upon‐dendritic polymers were measured by using pyrene as the polarity probe. To study the encapsulation performances of those hyperbranched‐upon‐dendritic polymers as unimolecular hosts, inter‐molecular encapsulation was carefully prevented by controlling the host concentrations below their CACs and by washing with good organic solvents. The study on encapsulation of two model guest molecules, pyrene and indomethacin, was performed. The amounts of encapsulated molecules were dependent mainly on the size of inner linear shells. About three pyrene molecules or five indomethacin molecules were encapsulated in hyperbranched‐upon‐dendritic polymers with average PCL repeating units of two but different hyperbranched polyglycerol outer shells, whereas about five pyrene molecules or about 12 indomethacin molecules were encapsulated in those with PCL repeating units of nine. The encapsulated molecules could be released in a controlled manner. Thus, the hyperbranched‐upon‐dendritic polymers could be used as unimolecular nanocarriers with controllable molecular encapsulation dosage for controlled release. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4013–4019, 2010  相似文献   

14.
2‐Hydroxyethyl methacrylate has been polymerized in methanol using activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP), to produce water‐soluble poly(2‐hydroxyethyl methacrylate) (PHEMA). The various parameters that determine control of the living polymerization have been explored. Using the Cu(II)/TPMA catalyst system (TPMA = tris(2‐pyridylmethyl)amine), controlled polymerization was achieved with Cu concentrations as low as 50 ppm relative to HEMA, with a [TPMA]/[Cu(II)] ratio of 5. Use of hydrazine as the reducing agent generally gave better control of polymerization than use of ascorbic acid. The polymerization conditions were tolerant of small amounts of air, and colorless polymers were easily isolated by simple precipitation and washing steps. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4084–4092, 2010  相似文献   

15.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

16.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A convenient two‐step approach for the synthesis of ferrocenyl‐functionalized long chain branched polydienes, based on both butadiene and isoprene, respectively, is presented. Classical living anionic polymerization was used to synthesize different ABn type poly(diene) macromonomers with moderate molecular weights between 1700 and 3200 g/mol and narrow polydispersity. Quantitative end‐capping with chlorodimethylsilane resulted in the desired ABn macromonomer structures. In the ensuing Pt‐catalyzed hydrosilylation polyaddition, branched, functionalized polydienes were obtained by a concurrent ABn + AR type of copolymerization with mono‐ and difunctional ferrocenyl silanes (fcSiMe2H or fc2SiMeH). Molecular weights of the branched polymers were in the range of 10,000 to 44,000 g/mol (SEC/MALLS). Because of the large number of functional end groups, high loading with ferrocene units up to 63 wt % of ferrocene was achieved. Detailed studies showed full conversion of the functional silanes and incorporation into the branched polymer. Further studies using DSC, TGA, and cyclovoltammetry (CV) measurements have been performed. Electrochemical studies demonstrated different electrochemical properties for fcSiMe2‐ and fc2SiMe‐units. The CVs of polymers modified with diferrocenylsilane units exhibit the pattern of communicating ferrocenyl sites with two distinct, separate oxidation waves. The polymers were also deposited on an electrode surface and the electrodes investigated via CV, showing formation of electroactive films with promising results for the use of the materials in biosensors. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2518–2529, 2009  相似文献   

18.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

19.
New star‐shaped and photocrosslinked poly(1,5‐dioxepan‐2‐one) (PDXO) has been synthesized through ring‐opening polymerization initiated by SnOct2/pentaerythritol. The star‐shaped PDXO was end‐functionalized by acrolyol chloride to form acrylate end groups. The end‐functionalized PDXO was photocrosslinked initiated by 2,2‐dimethoxy‐2‐phenylacetophenone. The gel content ranged from 80 to 99%, indicating a high degree of crosslinking. The thermal properties of the star‐shaped PDXO and the photocrosslinked PDXO were analyzed by differential scanning calorimetry. The glass‐transition temperature was determined to approximately ?32 °C for the crosslinked PDXO. The viscosity numbers were determined for star‐shaped PDXO, with reference to linear homologues. The star‐shaped PDXO had lower viscosity numbers than the linear counterparts. The crosslinked PDXO showed a rather hydrophilic surface as compared with other resorbable polyesters. The advancing contact angle was 64 ± 2, and the receding angle was 57 ± 4. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2049–2054, 2002  相似文献   

20.
Energetic polymers salts from 1‐vinyl‐1,2,4‐triazole derivatives have been synthesized via free radical polymerization of 1‐vinyl‐1,2,4‐triazolium monomer salts or by protonation of poly(1‐vinyl‐1,2,4‐triazole) with inorganic or organic acids. Standard enthalpies of formation of the new monomer salts were calculated using the computationally feasible DFT(B3LYP) and MP2 methods in conjunction with an empirical approach based on densities of salts. Compared with the monomer salts, the polymer salts have good thermal properties with high densities > 1.5 g cm?3. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2414–2421, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号