首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(L ‐lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposite recently attracts much attention because of its excellent comprehensive properties including improved thermostability, tensile strength, and conductivity. However, the nanocomposite exhibits similar brittleness compared with unmodified PLLA. In this work, a polar elastomer, that is, ethylene‐co‐vinyl acetate (EVA), was introduced into PLLA/MWCNTs nanocomposite. The selective distribution of MWCNTs and the effects of EVA on crystalline structure of PLLA were investigated using scanning electron microscope, transmission electron microscope, differential scanning calorimetry, and wide angle X‐ray diffraction. The results show that the presence of EVA induces the change of the distribution of MWCNTs in the nanocomposites, and consequently, the cold crystallization of PLLA is prevented. With the increase of EVA content, both the ductility and the impact resistance of PLLA/FMWCNTs are improved greatly, indicating the toughening effect of EVA on PLLA/MWCNTs nanocomposite. The decreased tensile strength and modulus can be compensated through annealing treatment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
Organic montmorillonite (OMMT) and the one‐dimensional functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into poly(L ‐lactide) (PLLA) to prepare PLLA/OMMT and PLLA/FMWCNT nanocomposites, respectively. The effects of nanofillers on melt crystallization and cold crystallization of PLLA were comparatively investigated by using polarized optical microcopy, differential scanning calorimetry and wide angle X‐ray diffraction. The results show that FMWCNTs exhibit higher nucleation efficiency for the melt crystallization of PLLA, whereas OMMT is the better one for the cold crystallization of PLLA. Rheological properties show that both OMMT and FMWCNTs at relatively higher concentrations can form the percolated network structure in the PLLA matrix, however, the latter nanocomposites exhibit relatively denser or more compact percolated networks. The difference of the networks between OMMT and FMWCNTs is suggested to be the main reason for the different cold crystallization behaviors observed in the PLLA/OMMT and PLLA/FMWCNT nanocomposites. The dynamic mechanical analysis measurements show that OMMT is the better one to improve the stiffness of the nanocomposites in the present work. The thermogravimetric analysis measurements show that FMWCNTs have higher efficiency in improving the thermal stability of PLLA compared with OMMT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

3.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

4.
Toughening of poly( L ‐lactide) (PLLA) by elastomer attracts much attention in recent years; however, it is usually associated with the deterioration of modulus and/or strength, resulting in limitation in many applications of the material. In this work, functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into ethylene‐co‐vinyl acetate toughened PLLA blends. The effects of FMWCNTs content on crystalline structure of PLLA matrix and the morphology of the blends, as well as the selective distribution of FMWCNTs in the ternary nanocomposites were investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction, scanning electron microscope, and transmission electron microscope. The results show that FMWCNTs exhibit excellent nucleation role in improving the cold crystallization behaviors of PLLA during the annealing and/or DSC heating processes. The results of mechanical property measurements demonstrate that the modulus, strength, and ductility of the blends can be further improved simultaneously through introducing FMWCNTs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(propylene) (PP)/PP grafted styrene‐butadiene rubber (PP‐g‐SBR) nanocomposite was prepared by blending PP with PP‐g‐SBR using dynamical photografting. The crystal morphological structure, thermal behavior, and mechanical properties of PP/PP‐g‐SBR nanocomposites have been studied by photoacoustic Fourier transform infrared spectroscopy (PAS‐FT‐IR), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and mechanical measurements. The data obtained from the mechanical measurements show that the PP‐g‐SBR as a modifier can considerably improve the mechanical properties of PP/PP‐g‐SBR nanocomposites, especially for the notched Izod impact strength (NIIS). The NIIS of the nanocomposite containing 2 wt% PP‐g‐SBR measured at 20°C is about 2.6 times that of the control sample. The results obtained from PAS‐FTIR, WAXD, SEM, and DSC measurements revealed the enhanced mechanism of impact strength of PP/PP‐g‐SBR nanocomposites as follows: (i) the β‐type crystal of PP formed and its content increased with increasing the photografting degree of PP‐g‐SBR; (ii) the size of PP‐g‐SBR phase in the PP/PP‐g‐SBR nanocomposites obviously reduced and thus the corresponding number of PP‐g‐SBR phase increased with increasing the photografting degree of PP‐g‐SBR. All the earlier changes on the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of PP at low temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491  相似文献   

7.
Poly(vinylidene chloride‐co‐vinylchloride)/organically modified fluorinated synthetic mica (MEE) (VDC‐VC/MEE) nanocomposites were prepared by melt blending of VDC‐VC copolymer with MEE, in the presence of dioctyl phthalate (DOP) which acted as a plasticizer and a cointercalating agent. The nanostructure, thermal, and dynamic mechanical properties of the VDC‐VC/MEE nanocomposites were studied by wide angle X‐ray diffractometer (WAXD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). It was found that partially intercalated and partially exfoliated structures coexisted in VDC‐VC/MEE nanocomposities. Below 8 wt % MEE content, the intercalation effect of nanocomposites decreased with increasing the MEE content. Under a nitrogen atmosphere, VDC‐VC/MEE nanocomposites exhibited a single step thermal degradation behavior. The nanostructure of VDC‐VC/MEE can effectively prevent volatile gases from being released, and thus enhances its thermal stability. The thermal stability of VDC‐VC/MEE nanocomposites is strongly related to the morphology of nanocomposites and the degraded composites structure. DMA revealed a significant improvement in the storage modulus within the testing temperature range. The increase in storage modulus depends on the MEE content, which is attributed to the dispersed phase morphology. The glass transition temperature of VDC‐VC/MEE nanocomposites is affected by the chain mobility in the nanocomposites rather than the aggregative morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1214–1225, 2008  相似文献   

8.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

9.
Highly exfoliated isotactic‐polypropylene/alkyl‐imidazolium modified montmorillonite (PP/IMMT) nanocomposites have been prepared via in situ intercalative polymerization. TEM and XRD results indicated that the obtained composites were highly exfoliated PP/IMMT nanocomposites and the average thickness of IMMT in PP matrix was less than 10 nm, and the distance between adjacent IMMT particles was in the range of 20–200 nm. The isothermal crystallization kinetics of highly exfoliated PP/IMMT nanocomposites were investigated by using differential scanning calorimeter(DSC) and polarized optical microscope (POM). The crystallization half‐time t1/2, crystallization peak time tmax, and the Avrami crystallization rate constant Kn showed that the nanosilicate layers accelerate the overall crystallization rate greatly due to the nucleation effect, and the crystallization rate was increased with the increase in MMT content. Meanwhile, the crystallinity of PP in nanocomposites decreased with the increase in clay content which indicated the PP chains were confined by the nanosilicate layers during the crystallization process. Although the well‐dispersed silicate layers did not have much influence on spherulites growth rate, the nucleation rate and the nuclei density increased significantly. Accordingly, the spherulite size decreased with the increase in MMT content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2215–2225, 2009  相似文献   

10.
This work reported the crystallization behaviors of poly(L ‐lactide) (PLLA) with the presence of polyethylene glycol (PEG) and/or functionalized multiwalled carbon nanotubes (FMWCNTs). The crystallization behaviors occurred in the different conditions, including nonisothermal, isothermal and during the annealing process, were analyzed comparatively using differential scanning calorimetry, wide angle X‐ray diffraction, and polarized optical microscope. The results show that PEG as an efficient plasticizer of PLLA enhances the mobility of PLLA chain segments, which leads to the decrease of glass transition temperature and the enhancement of crystallization ability of PLLA. FMWCNTs as a nucleating agent of PLLA crystallization promote the crystallization of PLLA apparently. With the presence of PEG and FMWCNTs, the crystallization of PLLA is well improved in all conditions, indicating the synergistic effects of PEG and FMWCNTs on PLLA crystallization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 520–528, 2010  相似文献   

11.
Immiscible polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blends with two different compositions, one (PP/EVA = 80/20) exhibits the typical sea‐island morphology and the other (PP/EVA = 60/40) exhibits the cocontinuous morphology, were prepared with different contents of f‐MWCNTs. The fracture behaviors, including notched Izod impact fracture and single‐edge notched tensile (SENT) fracture, were comparatively studied to establish the role of f‐MWCNTs in influencing the fracture toughness of PP/EVA blends. Our results showed that, for PP/EVA (80/20) system, f‐MWCNTs do not induce the fracture behavior change apparently. However, for PP/EVA (60/40) system, the fracture toughness of the blend increases dramatically with the increasing of f‐MWCNTs content. More severe plastic deformation accompanied by the fibrillar structure formation was observed during the SENT test. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/EVA (60/40) with f‐MWCNTs is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage. Further results based on crystalline structures and morphologies of the blends showed that a so‐called dual‐network structure of EVA and f‐MWCNTs forms in cocontinuous PP/EVA blends, which is thought to be the main reason for the largely improved fracture toughness of the sample. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1331–1344, 2009  相似文献   

12.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

13.
The maleic anhydride‐grafted multiwalled carbon nanotubes (MWCNTs‐g‐MA) have been introduced into polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blend. To clearly describe the effects of MWCNTs‐g‐MA on the morphology and mechanical properties of PP/EVA blends, the selective distribution of MWCNTs‐g‐MA in the blends is realized through different sample preparation methods, namely, MWCNTs‐g‐MA disperse in EVA phase and MWCNTs‐g‐MA disperse in PP matrix. The results show that the distribution of MWCNTs‐g‐MA has an important effect on the final morphology of EVA and the crystallization structure of PP matrix. Compared with PP/EVA binary blend, distribution of MWCNTs‐g‐MA in PP matrix induces the aggregation of EVA phase at high EVA content and the decrease of spherulite diameters of PP matrix simultaneously. However, when MWCNTs‐g‐MA are dispersed in the EVA phase, they induce more homogeneous distribution of EVA, and the crystallization behavior of PP is slightly affected by MWCNTs‐g‐MA. The corresponding mechanical properties including impact strength and tensile strength are tested and analyzed in the work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1481–1491, 2009  相似文献   

14.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

15.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

16.
In this work, the synthesis of polypropylene (PP)/graphene nanosheet (GNS) nanocomposites by in situ polymerization using metallocene catalysts was studied. Initial reactions were performed using rac‐Et(Ind)2ZrCl2 and rac‐Me2Si(Ind)2ZrCl2 catalysts to select the best one to obtain good molecular weight, thermal properties, and tacticity. Subsequently, PP nanocomposites with different loadings of GNS were obtained. GNS from two different sources [Graphite Nacional (GN) and Graphite Aldrich (GA)] have been used, and the differences between the obtained nanocomposites were evaluated. The GNS and nanocomposites were studied by scanning electronic microcopy, transmission electronic microcopy, and X‐ray diffraction. They showed that the GN nanosheets had lower crystal size and diameter than the GA nanosheets and dispersed better in the PP matrix. Differential scanning calorimetry analyses of both types of nanocomposites showed an increase in the crystallization temperature with increasing graphite loading. The polymeric materials were also characterized by GPC, thermogravimetric analysis, and 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

18.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

19.
Crystalline structures, nonisothermal crystallization behavior and surface folding free energy of polypropylene (PP)/poly(ethylene‐co‐vinyl acetate) (EVA) blend‐based organically modified montmorillonite (OMMT) nanocomposites were investigated by use of wide angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Nonisothermal crystallization kinetic analysis was performed using Avrami equation modified by Jeziorny as well as combined Avrami‐Ozawa method. Surface folding free energy and activation energy for PP and nanocomposite samples were also determined employing Hoffman‐Lauritzen's and Vyazovkins's approaches, respectively. The results obtained from transmission electron microscopy (TEM) showed that presence of EVA, which attracts most of the layered silicates, reduces number density of heterogeneous nuclei in the matrix and as a consequence, decreases the nucleation rate. Incorporation of EVA, PP‐g‐MA and OMMT results in a decrease of the chain surface folding free energy level. It was shown that although, OMMT acts as a barrier against the PP macromolecular motion but interestingly, it increases the overall crystallization rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 674–684, 2009  相似文献   

20.
The thermal behavior of melt‐mixed polypropylene (PP)/poly(?‐caprolactone) (PCL) blends was investigated with differential scanning calorimetry, and it was quantitatively related to the morphology observed through scanning electron microscopy. The PP/PCL blends were immiscible in the whole composition range; however, some interesting phenomena were found. Blends with low PP contents crystallized in a fractionated fashion. By applying a self‐nucleation procedure, we demonstrated that this occurred because of a lack of highly active heterogeneities within the confined PP domains. On the other hand, PP acted as a nucleating agent for PCL, and when the PP content was reduced, the higher surface/volume ratio increased its nucleating activity. The nucleating effect was improved when the PP was self‐nucleated because of the better nucleating effect of PP annealed crystals. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1365–1379, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号