首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The capacitated minimum spanning tree (CMST) problem is to find a minimum cost spanning tree in a network where nodes have specified demands, with an additional capacity constraints on the subtrees incident to a given source node s. The capacitated minimum spanning tree problem arises as an important subproblem in many telecommunication network design problems. In a recent paper, Ahuja et al. (Math. Program. 91 (2001) 71) proposed two very large-scale neighborhood search algorithms for the capacitated minimum spanning tree problem. Their first node-based neighborhood structure is obtained by performing multi-exchanges involving several trees where each tree contributes a single node. Their second tree-based neighborhood structure is obtained by performing multi-exchanges where each tree contributes a subtree. The computational investigations found that node-based multi-exchange neighborhood gives the best performance for the homogenous demand case (when all nodes have the same demand), and the tree-based multi-exchange neighborhood gives the best performance for the heterogeneous demand case (when nodes may have different demands). In this paper, we propose a composite neighborhood structure that subsumes both the node-based and tree-based neighborhoods, and outperforms both the previous neighborhood search algorithms for solving the capacitated minimum spanning tree problem on standard benchmark instances. We also develop improved dynamic programming based exact algorithms for searching the composite neighborhood.  相似文献   

2.
This paper presents a parallel tabu search algorithm that utilizes several different neighborhood structures for solving the capacitated vehicle routing problem. Single neighborhood or neighborhood combinations are encapsulated in tabu search threads and they cooperate through a solution pool for the purpose of exploiting their joint power. The computational experiments on 32 large scale benchmark instances show that the proposed method is highly effective and competitive, providing new best solutions to four instances while the average deviation of all best solutions found from the collective best results reported in the literature is about 0.22%. We are also able to associate the beneficial use of special neighborhoods with some test instance characteristics and uncover some sources of the collective power of multi-neighborhood cooperation.  相似文献   

3.
This paper introduces dual and primal-dual RAMP algorithms for the solution of the capacitated minimum spanning tree problem (CMST). A surrogate constraint relaxation incorporating cutting planes is proposed to explore the dual solution space. In the dual RAMP approach, primal-feasible solutions are obtained by simple tabu searches that project dual solutions onto primal feasible space. A primal-dual approach is achieved by including a scatter search procedure that further exploits the adaptive memory framework. Computational results from applying the methods to a standard set of benchmark problems disclose that the dual RAMP algorithm finds high quality solutions very efficiently and that its primal-dual enhancement is still more effective.  相似文献   

4.
We consider the problem of finding a fundamental cycle basis with minimum total cost in an undirected graph. This problem is NP-hard and has several interesting applications. Since fundamental cycle bases correspond to spanning trees, we propose a local search algorithm, a tabu search and variable neighborhood search in which edge swaps are iteratively applied to a current spanning tree. We also present a mixed integer programming formulation of the problem whose linear relaxation yields tighter lower bounds than other known formulations. Computational results obtained with our algorithms are compared with those from the best available constructive heuristic on several types of graphs. This article extends the conference paper (Amaldi et al. 2004).  相似文献   

5.
We propose in this work a hybrid improvement procedure for the bin packing problem. This heuristic has several features: the use of lower bounding strategies; the generation of initial solutions by reference to the dual min-max problem; the use of load redistribution based on dominance, differencing, and unbalancing; and the inclusion of an improvement process utilizing tabu search. Encouraging results have been obtained for a very wide range of benchmark instances, illustrating the robustness of the algorithm. The hybrid improvement procedure compares favourably with all other heuristics in the literature. It improved the best known solutions for many of the benchmark instances and found the largest number of optimal solutions with respect to the other available approximate algorithms.  相似文献   

6.
The single row facility layout problem (SRFLP) is the problem of arranging facilities with given lengths on a line, while minimizing the weighted sum of the distances between all pairs of facilities. The problem is NP-hard. In this paper, we present two tabu search implementations, one involving an exhaustive search of the 2-opt neighborhood and the other involving an exhaustive search of the insertion neighborhood. We also present techniques to significantly speed up the search of the two neighborhoods. Our computational experiments show that the speed up techniques are effective, and our tabu search implementations are competitive. Our tabu search implementations improved previously known best solutions for 23 out of the 43 large sized SRFLP benchmark instances.  相似文献   

7.
This paper presents a highly effective reinforcement learning enhancement of multi-neighborhood tabu search for the max-mean dispersion problem. The reinforcement learning component uses the Q-learning mechanism that incorporates the accumulated feedback information collected from the actions performed during the search to guide the generation of diversified solutions. The tabu search component employs 1-flip and reduced 2-flip neighborhoods to collaboratively perform the neighborhood exploration for attaining high-quality local optima. A learning automata method is integrated in tabu search to adaptively determine the probability of selecting each neighborhood. Computational experiments on 80 challenging benchmark instances demonstrate that the proposed algorithm is favorably competitive with the state-of-the-art algorithms in the literature, by finding new lower bounds for 3 instances and matching the best known results for the other instances. Key elements and properties are also analyzed to disclose the source of the benefits of our integration of learning mechanisms and tabu search.  相似文献   

8.
We develop ideas to enhance the performance of the variable neighborhood search (VNS) by guiding the search in the shaking phase, and by employing the Skewed strategy. For this purpose, Second Order algorithms and Skewed functions expressing structural differences are embedded in an efficient VNS proposed in the literature for the degree constrained minimum spanning tree problem. Given an undirected graph with weights associated with its edges, the degree constrained minimum spanning tree problem consists in finding a minimum spanning tree of the given graph, subject to constraints on node degrees. Computational experiments are conducted on the largest and hardest benchmark instances found in the literature to date. We report results showing that the VNS with the proposed strategies improved the best known solutions for all the hardest benchmark instances. Moreover, these new best solutions significantly reduced the gaps with respect to tight lower bounds reported in the literature.  相似文献   

9.
In this paper we develop, study and test new neighborhood structures for the Hop-constrained Minimum Spanning Tree Problem (HMSTP). These neighborhoods are defined by restricted versions of a new dynamic programming formulation for the problem and provide a systematic way of searching neighborhood structures based on node-level exchanges. We have also developed several local search methods that are based on the new neighborhoods. Computational experiments for a set of benchmark instances with up to 80 nodes show that the more elaborate methods produce in a quite fast way, heuristic solutions that are, for all cases, within 2% of the optimum.  相似文献   

10.
Tabu search is a meta-heuristic problem solving technique that, when applied carefully, provides near optimal solutions in a very short time. In this paper, we have described the use of tabu search for solving problems related to very large scale integrated (VLSI) circuit design automation. Specifically, we have demonstrated the use for VLSI circuit partitioning and placement. We present a tabu search based circuit bi-partitioning technique that partitions circuits with the goal of minimizing the size of the cutset between the partitions. Then, we use tabu search techniques along with force directed placement techniques to accomplish the physical placement of VLSI circuits on regular two-dimensional arrays with the goal of minimizing the placement time. We use empirical data from partitioning and placement of benchmark circuits to test our techniques. Our methods show improvement when compared to partitioning techniques from the literature and commercially available placement tools. Relative to the literature, our tabu search bi-partitioning technique improves on the best known minimum cuts for several benchmark circuits. Relative to commercially available computer aided design tools, our tabu search based placement approach shows dramatic (20×) speedup in execution time without negative impact on the quality of the solution.  相似文献   

11.
This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arborescence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms: powerful new cuts expressed over a very large set of variables are added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very significant improvements over previous algorithms. Several open instances could be solved to optimality.  相似文献   

12.
A tabu search algorithm for solving economic lot scheduling problem   总被引:1,自引:0,他引:1  
The economic lot scheduling problem has driven considerable amount of research. The problem is NP-hard and recent research is focused on finding heuristic solutions rather than searching for optimal solutions. This paper introduces a heuristic method using a tabu search algorithm to solve the economic lot scheduling problem. Diversification and intensification schemes are employed to improve the efficiency of the proposed Tabu search algorithm. Experimental design is conducted to determine the best operating parameters for the Tabu search. Results show that the tabu search algorithm proposed in this paper outperforms two well known benchmark algorithms.  相似文献   

13.
Neighbourhood search algorithms are often the most effective known approaches for solving partitioning problems. In this paper, we consider the capacitated examination timetabling problem as a partitioning problem and present an examination timetabling methodology that is based upon the large neighbourhood search algorithm that was originally developed by Ahuja and Orlin. It is based on searching a very large neighbourhood of solutions using graph theoretical algorithms implemented on a so-called improvement graph. In this paper, we present a tabu-based large neighbourhood search, in which the improvement moves are kept in a tabu list for a certain number of iterations. We have drawn upon Ahuja–Orlin's methodology incorporated with tabu lists and have developed an effective examination timetabling solution scheme which we evaluated on capacitated problem benchmark data sets from the literature. The capacitated problem includes the consideration of room capacities and, as such, represents an issue that is of particular importance in real-world situations. We compare our approach against other methodologies that have appeared in the literature over recent years. Our computational experiments indicate that the approach we describe produces the best known results on a number of these benchmark problems.  相似文献   

14.
This paper describes an attribute based tabu search heuristic for the generalized minimum spanning tree problem (GMSTP) known to be NP-hard. Given a graph whose vertex set is partitioned into clusters, the GMSTP consists of designing a minimum cost tree spanning all clusters. An attribute based tabu search heuristic employing new neighborhoods is proposed. An extended set of TSPLIB test instances for the GMSTP is generated and the heuristic is compared with recently proposed genetic algorithms. The proposed heuristic yields the best results for all instances. Moreover, an adaptation of the tabu search algorithm is proposed for a variation of the GMSTP in which each cluster must be spanned at least once.  相似文献   

15.
The capacitated single assignment hub location problem with modular link capacities is a variant of the classical hub location problem in which the cost of using edges is not linear but stepwise, and the hubs are restricted in terms of transit capacity rather than in the incoming traffic. We propose a metaheuristic algorithm based on strategic oscillation, a methodology originally introduced in the context of tabu search. Our method incorporates several designs for constructive and destructive algorithms, together with associated local search procedures, to balance diversification and intensification for an efficient search. Computational results on a large set of instances show that, in contrast to exact methods that can only solve small instances optimally, our metaheuristic is able to find high-quality solutions on larger instances in short computing times. In addition, the new method, which joins tabu search strategies with strategic oscillation, outperforms the previous tabu search implementation.  相似文献   

16.
The black-and-white travelling salesman problem (BWTSP) is an extension to the well-known TSP by partitioning the set of vertices into black and white vertices, and imposing cardinality and length constraints between two consecutive black vertices in a Hamiltonian tour. BWTSP has various applications in aircraft routing, telecommunication network design and logistics. In this paper, we develop several tabu search (TS) heuristics for solving the BWTSP. Our TS is built upon a new efficient neighbourhood structure, which exploits both the permutation and knapsack features of BWTSP. We also embed our TS as a heuristic procedure to improve the upper bound in a mixed-integer linear programming method. Extensive computational experiment on both benchmark and randomly generated instances shows effectiveness and efficiency of our algorithms. Our algorithms are able to obtain optimal and near optimal solutions to small instances in seconds, and find feasible solutions to large instances that have not been solved by the existing methods in the literature.  相似文献   

17.
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. Extensive investigation has been devoted to developing efficient algorithms to find optimal or near-optimal solutions. This paper proposes a new heuristic algorithm for the JSSP that effectively combines the classical shifting bottleneck procedure (SBP) with a dynamic and adaptive neighborhood search procedure. Our new search method, based on a filter-and-fan (F&F) procedure, uses the SBP as a subroutine to generate a starting solution and to enhance the best schedules produced. The F&F approach is a local search procedure that generates compound moves by a strategically abbreviated form of tree search. Computational results carried out on a standard set of 43 benchmark problems show that our F&F algorithm performs more robustly and effectively than a number of leading metaheuristic algorithms and rivals the best of these algorithms.  相似文献   

18.
This paper deals with a recently introduced routing problem variant called the undirected capacitated arc routing problem with profits (UCARPP). The UCARPP model considered in the present study is primarily aimed at generating the route set which maximizes the profit collected from a set of potential customers, represented by edges of the examined transportation network. The secondary objective is to minimize the total route travel time. The generated routes are subject both to capacity and travel time constraints. To tackle the examined problem, we propose a local search metaheuristic development which explores two solution neighborhood structures. The conducted search is effectively diversified by means of the promises concept which is based on the aspiration criteria used in tabu search approaches. The proposed algorithm was tested on UCARPP benchmark instances taken from the literature. It efficiently produced high-quality results, improving several previously best known solutions.  相似文献   

19.
In this paper, we develop new heuristic procedures for the maximum diversity problem (MDP). This NP-hard problem has a significant number of practical applications such as environmental balance, telecommunication services or genetic engineering. The proposed algorithm is based on the tabu search methodology and incorporates memory structures for both construction and improvement. Although proposed in seminal tabu search papers, memory-based constructions have often been implemented in naïve ways that disregard important elements of the fundamental tabu search proposals. We will compare our tabu search construction with a memory-less design and with previous algorithms recently developed for this problem. The constructive method can be coupled with a local search procedure or a short-term tabu search for improved outcomes. Extensive computational experiments with medium and large instances show that the proposed procedure outperforms the best heuristics reported in the literature within short computational times.  相似文献   

20.
The classical vehicle routing problem (VRP) involves determining a fleet of homogeneous size vehicles and designing an associated set of routes that minimizes the total cost. Our tabu search (TS) algorithm to solve the VRP is based on reactive tabu search (RTS) with a new escape mechanism, which manipulates different neighbourhood schemes in a very sophisticated way in order to get a balanced intensification and diversification continuously during the search process. We compare our algorithm with the best methods in the literature using different data sets and report results including new best known solutions for several well-known benchmark problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号