首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以3-对羟基苯甲酰喹啉-2-甲醛(CBQCA)为检测痕量氨基酸的柱前衍生试剂,利用高效液相色谱-激光诱导荧光-增强型电荷耦合器件检测器(HPLC-LIF-ICCD)系统,考察了氨基酸衍生和HPLC分离过程中多种因素的影响,建立了HPLC-LIF-ICCD分离检测痕量氨基酸的新方法,并应用于鼠脑微透析液的氨基酸检测.当信噪比为3时,对甘氨酸的质量检出限为5fmol.  相似文献   

2.
Tryptophane (Trp) labelled by 3‐(4‐carboxybenzoyl)‐2‐quinolinecarboxaldehyde (CBQCA) is very difficult to identify using CE and fluorescence detection (480 nm). Why in this article some mass spectrometry experiments show that Trp is really labelled by CBQCA as Leucine (Leu)? If the maximum of UV absorption (λmax) is the same between Leu‐CBQCA and Trp‐CBQCA, the molar extinction coefficient is around 2 fold higher for Trp‐CBQCA. The fluorescence of the Leu‐CBQCA derivative is 50 times more important than for Trp‐CBQCA. The addition of 7.5 mM of β‐cyclodextrin (β‐CD) was found to be a good mean to improve 2.1 fold the sensitivity of the Trp‐CBQCA fluorescence. Using a buffer containing SDS and β‐CD in CE, a LOD of 0.7 µM of L‐Trp can be reached and the ratio of the intensities between Leu, Isoleucine, Valine, Trp is 100, 21, 15, 1. Negative ESI/MS and MS/MS of the labeled amino acids show that a loss of the carboxylate function takes place. In the presence of two enantiomers of Trp‐CBQCA, we have shown that this decarboxylation is not due to the derivatization process in the solution but rather occurs in the source of the mass spectrometer.  相似文献   

3.
Zhao X  Kottegoda S  Shippy SA 《The Analyst》2003,128(4):357-362
A simple and sensitive solid-phase fluorescence immunoassay method was developed to detect peptides without separating them from a biological matrix. A near infrared fluorescence detection system was constructed for scanning analyte spots blotted onto protein binding membranes. Hydrophobic membranes were used with a modified vacuum spot blotting system to concentrate the peptide solution into a small area and the overall assay time was thus reduced by eliminating blocking steps. Both direct and indirect immunoassay methods are demonstrated; the indirect is more sensitive and features a 1 pmol detection limit of neat dynorphin A solutions. To further increase the immunoassay sensitivity, a novel capillary blotting system with hydrophilic membranes was designed where optimized sample volumes of 167 nL were deposited for each spot. The area-reduced blotting method shows a 1000-fold improved, 1.3 fmol spot(-1) detection limit of a dynorphin A diluted in a buffered solution of 150 mg L(-1) of casein. Low-flow push-pull perfusates with volumes of 1 microL sampled from the striatum of the rat were assayed for dynorphin A by the method of standard addition. The detection limit was estimated to be 1.9 fmol in the low-flow push-pull perfusates. These data demonstrate a solid-phase near infrared immunofluorescence strategy for the study of peptides directly blotted from chemically complex biological fluid matrices.  相似文献   

4.
Capillary electrophoresis coupled to LED-induced fluorescence detection is a robust and sensitive technique used for amino acids (AA) analysis in biological media, after labeling with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA). We wanted to quantitate in plasma tryptophan (Trp), tyrosine (Tyr), valine (Val), and isoleucine (Ile). Among the different labeled AA-CBQCA, Trp has the lowest fluorescence yield, which makes its detection and quantification very difficult in biological samples such as plasma. We tried to improve Trp analysis by CE/LED-induced fluorescence detection to its maximal sensitivity by using large volume sample stacking as a preconcentration step in our analytical protocol. At pH 9.5, this step caused a drop in resolution during the separation of the four AAs and it was therefore necessary to work at pH 10. We have found that Tyr, Val, Ile, and Trp are detected and well separated from the other AAs, but Trp cannot be quantified in plasma samples, mainly because of the low fluorescence yield of the Trp-CBQCA derivative. The recorded LOD is 0.18 μM for Trp-CBQCA in standard solution with a resolution between Trp and Tyr of 1.2, while the LOD is 6 μM in plasma with the same resolution. Trp, Tyr, Val, and Ile are, however, efficiently quantified when using a 3 M acetic acid electrolyte and CE associated with capacitively coupled contactless conductivity detection, which also has the advantage of not requiring derivatization or large volume sample stacking. This article demonstrates, for the CE user, that quantitative analysis of these four AA in mouse plasma can be performed by CE-fluorescence after CBQCA labeling, with the exception of Trp. It can be advantageously replaced by CE/capacitively coupled contactless conductivity detection, the only efficient one for Trp, Tyr, Val, and Ile quantification. In this case, the LOD for Trp is 2 μM. The four AAs are separated with resolution with neighbors above 1.5.  相似文献   

5.
The role of neurotransmitter amino acids (NAAs) in the functioning of the nervous system has been the focus of increasingly intense research over the past several years. Among the various amino acids that have important roles as neurotransmitters, there are alanine (Ala), glutamic acid (Glu), aspartic acid (Asp), serine (Ser), taurine (Tau) and glycine (Gly). NAAs are present in plasma, cells and—at trace levels—in all biological fluids, but complex components in biological matrices make it difficult to determine them in biological samples. We describe a new capillary electrophoresis (CE) method with laser-induced fluorescence detection by which analytes are resolved in less than 12 minutes in a 18 mmol/L phosphate run buffer at pH 11.6. The use of elevated temperatures during sample derivatization leads to a drastic reduction in the reaction time, down to 20 min, compared to the 6–14 h usually described for reactions between FITC and amino acids at room temperature. In order to demonstrate its wide range of applications, the method was applied to the analysis of NAA in human plasma and in other sample types, such as red blood cells, urine, cultured cells, cerebrospinal fluid, saliva and vitreous humor, thus avoiding the typical limitations of other methods, which are normally suitable for use with only one or two matrix types.  相似文献   

6.
Quantitative analysis of amino acids in blood and urine is primarily indicated for the diagnosis of amino acid disorders. The high-performance liquid chromatography (HPLC) technique is frequently used for this detection. The frequency of sample collection on filter paper has been increasing exponentially, and there are many advantages attributed to processing biological samples in this way. The aim of this study was to validate a quantitative analysis of amino acids by HPLC in blood and urine collected on filter paper and to establish reference values in the neonatal period. Dried blood and dried urine samples of respectively 58 and 45 healthy newborns (2–9 days) were collected. Pre-treatment and extraction of samples were done according to the literature. Separation and analysis of amino acids were carried out by HPLC with fluorescence detection. The developed method demonstrated excellent separation, linearity, limits of detection and quantification, repeatability and recovery. The reference values for 17 amino acids were defined in dried blood and urine samples of newborns. This work presents a simple, fast and effective method for the simultaneous analysis of 17 amino acids in blood and urine collected on filter paper in a single run. The reference values were established and validated.  相似文献   

7.
Amino acids: aspects of impurity profiling by means of CE   总被引:1,自引:0,他引:1  
Kopec S  Holzgrabe U 《Electrophoresis》2007,28(13):2153-2167
Quality control of active pharmaceutical ingredients (API) is commonly performed by means of HPLC. However, CE offers a suitable alternative, especially for the analysis of easily chargeable substances, i.e., amino acids. The article reviews, on the one hand, CE methods developed for impurity profiling of synthesized amino acid analogs. However, nowadays, production of amino acids/peptides is dominated by fermentation. Therefore, on the other hand, CE methods for the analysis of amino acids and small peptides are reported. The results of CE analysis of glutathione samples according to the monograph in the European Pharmacopoeia (Ph. Eur.) 5.7 and amino acid samples after derivatization with 9-fluorenylmethyl chloroformate (FMOC) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) may pave the way for impurity profiling of fermentatively produced API by means of CE.  相似文献   

8.
Qu J  Chen W  Luo G  Wang Y  Xiao S  Ling Z  Chen G 《The Analyst》2002,127(1):66-69
Determination of amino acids in a complex matrix without derivatization is advantageous, however, difficulties are found in both the detection and the separation of those compounds. In this study, a rapid and reliable LC-MS-MS method for the quantitation of underivatized amino acids in exocellular media was established. Injections were made directly after centrifugation of the samples, without further preparation. The separation of seven underivatized amino acids was achieved on a reversed-phase C18 column with pentadecafluorooctanoic acid as a volatile ion-pair reagent, and the specific detection of most amino acids was achieved by MS-MS of the specific transitions [M + H]+-->[M + H - 46]+. The calibration curves of all analytes were linear over the range of 1.0-1000 microg ml(-1) and the detection limits ranged from 0.1 to 5 ng ml(-1), with an injection volume of 20 microl. The inter-day and intra-day precisions ranged from 2.6 to 5.7% and 4.8 to 8.2%, respectively; the mean recoveries of the seven analytes were 81-104%, 91-107% and 93-101% respectively at the spiked level of 10, 40 and 200 microg ml(-1). A large number of fermentation samples were analysed using this method. The technique is simple, rapid, selective and sensitive, and shows potential for the high-throughput quantitation of amino acids from other biological matrices.  相似文献   

9.
We describe a method to identify and quantify amino acids using capillary electrophoresis-electrospray ionization-triple-quadrupole tandem mass spectrometry (CE-ESI-MS/MS). Amino acids, including physiological amino acids, were first separated by CE under acidic pH conditions and then detected by MS/MS. To efficiently introduce the whole sample into the capillary, no electrical potential was applied to the electrospray probe until running electrophoresis. The position of the electrosprayer with respect to the MS capillary entrance drastically affected sensitivity and generation of cluster ions. MS/MS with multiple reaction monitoring (MRM) detection was performed to obtain sufficient selectivity and sensitivity. Under optimized CE-MS/MS conditions, the minimum detectable levels for 32 free amino acids normally found in proteins and other physiological amino acids were between 0.1 and 14 micromol/L with pressure injection of 50 mbar for 3 s (3 nL) at a signal-to-noise ratio of 3. For most amino acids, this constitutes a severalfold increase in sensitivity compared to CE-MS. The relative standard deviations (% RSD) for all amino acids were better than 0.4% for migration times and between 1.4% and 8.6% for peak areas (n = 10). Since amino acids exhibited characteristic MS/MS spectra, this approach is useful for the simultaneous, selective, quantitative, and reproducible analysis of amino acids in physiological and biological samples that contain various kinds of matrices. The power of the method was demonstrated by analyzing amino acids in human urine.  相似文献   

10.
Taha ZH 《Talanta》2003,61(1):3-10
The crucial role of nitric oxide (NO) in controlling many physiological functions in mammals is now established. To aid understanding this crucial role, sensitive and selective methods for its in vivo and in vitro detection are vital. The unique chemical and physical properties of NO set the tone for its detection strategies. This review summarizes different techniques and methodologies used in measuring NO in biological samples. Those include gas and liquid phase chemiluminescence, electron spin resonance spectroscopy, UV-visible spectroscopy, fluorescence, electrochemical sensors, and reporter cell assay. The principles, applications, merits, and limitations of each technique are discussed.  相似文献   

11.
除了经典碱基外,核酸(DNA和RNA)中还包含许多化学修饰。迄今为止,已经在核酸中鉴定了超过150多种化学修饰。这些化学修饰不会改变核酸的序列,但会改变它们的结构和生化特性,最终调节基因的时空表达。阐明这些修饰的功能可以促进对生命体生理调控机制的深入认识和理解。然而,核酸修饰在体内的丰度通常很低。因此,高灵敏和特异的检测方法对破译这些修饰的功能至关重要。化学衍生与质谱技术相结合对内源性低丰度核酸修饰展现出很好的分析能力。在过去几年中,研究者建立了多种基于化学衍生-质谱分析的分析方法,用于灵敏、高效地分析核酸修饰。该文总结了通过化学衍生-质谱分析方法来破译核酸修饰的最新进展,希望能促进未来对核酸修饰功能的深入研究。  相似文献   

12.
S‐nitrosothiols (RSNOs) are composed of nitric oxide (NO) bound to the sulfhydryl group of amino acids of peptides or proteins. There is a great interest for their quantitation in biological fluids as they have a crucial impact on physiological and pathophysiological events. Most analytical methodologies for quantitation of RSNOs are based on their decomposition followed by the detection of the released NO. In order to obtain the optimal sensitivity for each detection method, the total decomposition of RSNOs is highly desired. The decomposition of RSNOs can be obtained by using catalytically active metal ions, such as Cu+, obtained from CuSO4 in presence of a reducing agent such as glutathione (GSH) that is naturally present in biological environment. In this work, we have re‐investigated the decomposition of S‐nitrosoglutathione (GSNO) which is the most abundant in vivo low molecular weight RSNO, with a special emphasis on the effect of CuSO4, GSH, and GSNO concentrations and of their ratio. To this aim, GSNO decomposition optimization was performed by both indirect (Griess assay) and direct (real time electrochemical detection of NO at NO‐microsensor) quantitation methods. Our results show that the ratio between CuSO4, GSH and GSNO should be adjusted to tune the highest decomposition rate of GSNO and the most efficient electrochemical detection of released NO; also it shows the deleterious effect of very high GSH concentration on the detection of GSNO.  相似文献   

13.
Fluorescent probes with larger Stokes shifts in the far-visible and near-infrared spectral region (600–900 nm) are more superior for cellular imaging and biological analysis due to avoiding light scattering interference, reducing autofluorescence from biological sample and encouraging deeper tissue penetration in vivo imaging. In this work, two bis-methoxyphenyl-BODIPY fluorescent probes for the detection of nitric oxide (NO) have been firstly synthesized. Under physiological conditions, these probes can react with NO to form the corresponding triazoles with 250- and 70-fold turn-on fluorescence emitting at 590 and 620 nm, respectively. Moreover, the triazole forms of these probes have large Stokes shifts of 38 nm, in contrast to 10 nm of existing BODIPY probes for NO. Excellent selectivity has been observed against other reactive oxygen/nitrogen species, ascorbic acid and biological matrix. After the evaluation of MTT assay, new fluorescent probes have been successfully applied to fluorescence imaging of NO released from RAW 264.7 macrophages by co-stimulation of lipopolysaccharide and interferon-γ. The experimental results indicate that our fluorescent probes can be powerful candidates for fluorescence imaging of NO due to the low background interference and high detection sensitivity.  相似文献   

14.
Abstract

A procedure for the quantitative determination of 17 amino acids in a marine matrix using HPLC is reported. Pre-column derivatization with o-phthalaldehyde, separation on C18-bonded silica with phosphate buffer (pH 7.2)-acetonitrile as eluent and fluorescence detection have been used. The good variation coefficient (average 2% with working curves in real matrix) and the low detection limit (1-5 fmoles) make the procedure suitable for the determination of total or free amino acids in matrix cultures.  相似文献   

15.
A capillary electrophoresis and laser-induced fluorescence (CE-LIF) method was developed to identify and quantitate at amol (10(-18)) concentration. Amino acids were derivatized with 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde prior to CE-LIF analysis. The assay was developed by varying the sodium borate concentration, buffer pH, operating voltage, and operating temperature. A run buffer system containing 6.25 mM borate, 150 mM sodium dodecyl sulfate, and 10 mM tetrahydrofuran (pH 9.66) at 25 degrees C, and 24 kV provided analysis conditions for a high-resolution, sensitive, and repeatable assay of amino acids. The rate of derivatization, stability of the labeled amino acids, and amino acid quantitation varied for each amino acid. Amino acids were detected with greater efficiency by this method than automated HPLC amino acid analysis. The repeatability of the assay ranged from 0.3 to 0.9% within a day and 0.7 to 1.5% between analysis days. Bacterial amino acid utilization in a chemically defined medium was successfully monitored using this method. This work defines a sensitive and repeatable method for the detection of amino acids during bacterial metabolism.  相似文献   

16.
《Analytical letters》2012,45(4):647-658
A simple and label-free fluorescent assay for the sensitive determination of biological thiols was developed using Au@Ag nanoclusters. The sensing approach was based on the strong affinity of thiols to silver on the surface of the nanoclusters. In the presence of thiol-containing amino acids, the fluorescence of the Au@Ag nanoclusters was quenched due to the formation of a non-fluorescent coordination complex via the robust Ag-S bond, which allowed the determination of thiol-containing amino acids in a very simple and rapid way. Under the optimal conditions, an excellent linear relationship was present due to quenching of the Au@Ag nanoclusters over cysteine concentrations between 20 nM and 80 µM with a low detection limit of 5.87 nM. Glutathione was determined between 2 µM and 70 µM with a detection limit of 1.01 µM. In addition, the results reveal that the fluorescent assay has excellent selectivity toward thiol-containing amino acids compared to non-thiol containing amino acids. Moreover, the assay was successfully used to determine cysteine in human plasma, and thus Au@Ag nanoclusters are a suitable fluorescent probe for biological applications.  相似文献   

17.
Short-chain fatty acids are the major end products of bacterial metabolism in the large bowel. They derive mostly from the bacterial breakdown of carbohydrates and are known to have positive health benefits. Due to the biological relevance of these compounds it is important to develop efficient, cheap, fast, and sensitive analytical methods that enable the identification and quantification of the short-chain fatty acids in a large number of biological samples. In this study, a gas chromatography-mass spectrometry method was developed and validated for the analysis of short-chain fatty acids in faecal samples. These volatile compounds were extracted with ethyl acetate and 4-methyl valeric acid was used as an internal standard. No further cleanup, concentration, and derivatization steps were needed and the extract was directly injected onto the column. Recoveries ranged between 65 and 105%, and no matrix effects were observed. The proposed method has wide linear ranges, good inter- and intraday variability values (below 2.6 and 5.6%, respectively) and limits of detection between 0.49 μM (0.29 μg/g) and 4.31 μM (3.8 μg/g). The applicability of this analytical method was successfully tested in faecal samples from rats and humans.  相似文献   

18.
Among the techniques available for quantitative analysis of physiological amino acids, systems using optical detection are of low specificity because of possible interference at the analytical wavelength. Another disadvantage is problems of sample extraction from complex biological matrices, for example plasma. This paper describes reversed-phase LC of phenylthiocarbamyl (PTC) amino acids in plasma deproteinated by addition of acetonitrile. Specificity was monitored by photo-diode UV detection and accuracy was assessed by a plasma spiking procedure with more than one internal standard. Dual-wavelength spectrophotometry (254 and 283 nm) was also used for separate measurement of co-eluting adducts of tryptophan and ornithine. This method enables the quantification, with high reproducibility, of a total of twenty-three plasma amino acids from fasting healthy subjects. LOQ values are satisfactory for all the amino acids (average 6 μmol L?1). However, the method does not enable analysis of aspartate and overall homocystine, present at very low concentrations, in all plasma samples. This PTC–amino acid chromatographic method is inexpensive, reliable, and suitable for clinical research and therapeutic drug monitoring, but adaptation to dual on-line detection is required to improve its sensitivity.  相似文献   

19.
A simple, inexpensive yet highly selective colorimetric indicator-displacement assay array for the simultaneous detection and identification of three important biothiols at micromolar concentrations under physiological conditions and in real samples has been developed in this work. With use of an array composed of metal indicators and metal ions, clear differentiation among cysteine, homocysteine and glutathione was achieved. On the basis of the colour change of the array, quantification of each analyte was accomplished easily, and different biothiols were identified readily using standard chemometric approaches (hierarchical clustering analysis). Moreover, the colorimetric sensor array was not responsive to changes with 19 other natural amino acids, and it showed excellent reproducibility. Importantly, the sensor array developed was successfully applied to the determination and identification of the three biothiols in a real biological sample.
Figure
A simple, inexpensive yet highly selective colorimetric indicator-displacement assay array for the simultaneous detection and identification of three important biothiols was developed in this work  相似文献   

20.
Electromembrane extraction (EME) proved to be a simple and rapid pretreatment method for analysis of amino acids and related compounds in body fluid samples. Body fluids were acidified to the final concentration of 2.5 M acetic acid and served as donor solutions. Amino acids, present as cations in the donor solutions, migrated through a supported liquid membrane (SLM) composed of 1-ethyl-2-nitrobenzene/bis-(2-ethylhexyl)phosphonic acid (85:15 (v/v)) into the lumen of a porous polypropylene hollow fiber (HF) on application of electric field. The HF was filled with 2.5 M acetic acid serving as the acceptor solution. Matrix components in body fluids were efficiently retained on the SLM and did not interfere with subsequent analysis. Capillary electrophoresis with capacitively coupled contactless conductivity detection was used for determination of 17 underivatized amino acids in background electrolyte solution consisting of 2.5 M acetic acid. Parameters of EME, such as composition of SLM, pH and composition of donor and acceptor solution, agitation speed, extraction voltage, and extraction time were studied in detail. At optimized conditions, repeatability of migration times and peak areas of 17 amino acids was better than 0.3% and 13%, respectively, calibration curves were linear in a range of two orders of magnitude (r(2)=0.9968-0.9993) and limits of detection ranged from 0.15 to 10 μM. Endogenous concentrations of 12 amino acids were determined in EME treated human serum, plasma, and whole blood. The method was also suitable for simple and rapid pretreatment and determination of elevated concentrations of selected amino acids, which are markers of severe inborn metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号