首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ayman Badawi 《代数通讯》2013,41(1):108-121
Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and if a ∈ Z(R), then let ann R (a) = {d ∈ R | da = 0}. The annihilator graph of R is the (undirected) graph AG(R) with vertices Z(R)* = Z(R)?{0}, and two distinct vertices x and y are adjacent if and only if ann R (xy) ≠ ann R (x) ∪ ann R (y). It follows that each edge (path) of the zero-divisor graph Γ(R) is an edge (path) of AG(R). In this article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is connected with diameter at most two and with girth at most four provided that AG(R) has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph AG(R) is identical to the zero-divisor graph Γ(R) if and only if R has exactly two minimal prime ideals.  相似文献   

2.
Let R be a noncommutative prime ring and I a nonzero left ideal of R. Let g be a generalized derivation of R such that [g(r k ), r k ] n  = 0 for all r ∈ I, where k, n are fixed positive integers. Then there exists c ∈ U, the left Utumi quotient ring of R, such that g(x) = xc and I(c ? α) = 0 for a suitable α ∈ C. In particular we have that g(x) = α x, for all x ∈ I.  相似文献   

3.
A local ring R is called Z-local if J(R) = Z(R) and J(R)2 = 0. In this paper the structure of a class of Z-local rings is determined.  相似文献   

4.
A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G c * be the subgraph of G induced on the vertex set V (G)\ {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G = Γ(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G c * has at least two connected components. We prove that the diameter of the induced graph G c * is two if Z(R)2 ≠ {0}, Z(R)3 = {0} and G c * is connected. We determine the structure of R which has two distinct nonadjacent vertices α, βZ(R)* \ {c} such that the ideal [N(α) ∩ N(β)]∪ {0} is generated by only one element of Z(R)*\{c}. We also completely determine the correspondence between commutative rings and finite complete graphs K n with some end vertices adjacent to a single vertex of K n .  相似文献   

5.
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is Γ(R) = Z(R)\{0}, with distinct vertices x and y adjacent if and only if xy = 0. In this article, we study Γ(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that {0} ≠ Nil(R) ? zR for all z ∈ Z(R)\Nil(R).  相似文献   

6.
Let R be a commutative ring and M be a nonzero R-module. Now Z(M) = {r ∈ R | rm = 0 for some 0 ≠ m ∈ M} is a union of prime ideals of R and T(M) = {m ∈ M | rm = 0 for some 0 ≠ r ∈ R} is a union of prime submodules of M if M ≠ T(M). We investigate representations of Z(M) and T(M) as unions of primes each of which is a union of annihilators.  相似文献   

7.
AA-Rings     
《代数通讯》2013,41(10):3853-3860
Abstract

Let R be a ring with identity such that R +, the additive group of R, is torsion-free of finite rank (tffr). The ring R is called an E-ring if End(R +) = {x ? ax : a ∈ R} and is called an A-ring if Aut(R +) = {x ? ux : u ∈ U(R)}, where U(R) is the group of units of R. While E-rings have been studied for decades, the notion of A-rings was introduced only recently. We now introduce a weaker notion. The ring R, 1 ∈ R, is called an AA-ring if for each α ∈ Aut(R +) there is some natural number n such that α n  ∈ {x ? ux : u ∈ U(R)}. We will find all tffr AA-rings with nilradical N(R) ≠ {0} and show that all tffr AA-rings with N(R) = {0} are actually E-rings. As a consequence of our results on AA-rings, we are able to prove that all tffr A-rings are indeed E-rings.  相似文献   

8.
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)?{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.  相似文献   

9.
Let R be a non-commutative prime ring of characteristic different from 2, U its right Utumi quotient ring, C its extended centroid, F a generalized derivation on R, and f(x 1,…, x n ) a noncentral multilinear polynomial over C. If there exists a ∈ R such that, for all r 1,…, r n  ∈ R, a[F 2(f(r 1,…, r n )), f(r 1,…, r n )] = 0, then one of the following statements hold: 1. a = 0;

2. There exists λ ∈C such that F(x) = λx, for all x ∈ R;

3. There exists c ∈ U such that F(x) = cx, for all x ∈ R, with c 2 ∈ C;

4. There exists c ∈ U such that F(x) = xc, for all x ∈ R, with c 2 ∈ C.

  相似文献   

10.
Mark Grinshpon 《代数通讯》2013,41(7):2619-2624
Given rings R ? S, consider the division closure 𝒟(R, S) and the rational closure ?(R, S) of R in S. If S is commutative, then 𝒟(R, S) = ?(R, S) = RT ?1, where T = {t ∈ R | t ?1 ∈ S}. We show that this is also true if we assume only that R is commutative.  相似文献   

11.
Let (R, 𝔪) be a commutative, noetherian, local ring, E the injective hull of the residue field R/𝔪, and M ○○ = Hom R (Hom R (M, E), E) the bidual of an R-module M. We investigate the elements of Ass(M ○○) as well as those of Coatt(M) = {𝔭 ∈ Spec(R)|𝔭 = Ann R (Ann M (𝔭))} and provide criteria for equality in one of the two inclusions Ass(M) ? Ass(M ○○) ? Coatt(M). If R is a Nagata ring and M a minimax module, i.e., an extension of a finitely generated R-module by an artinian R-module, we show that Ass(M ○○) = Ass(M) ∪ {𝔭 ∈ Coatt(M)| R/𝔭 is incomplete}.  相似文献   

12.
In this note we study radicals of skew polynomial ring R[x; α] and skew Laurent polynomial ring R[x, x ?1; α], for a skew-Armendariz ring R. In particular, among the other results, we show that for an skew-Armendariz ring R, J(R[x; α]) = N 0(R[x; α]) = Ni?*(R)[x; α] and J(R[x, x ?1; α]) = N 0(R[x, x ?1; α]) = Ni?*(R)[x, x ?1; α].  相似文献   

13.
14.
15.
Let R be any commutative ring with identity, and let C be a (finite or infinite) cyclic group. We show that the group ring R(C) is presimplifiable if and only if its augmentation ideal I(C) is presimplifiable. We conjecture that the group rings R(C n ) are presimplifiable if and only if n = p m , p ∈ J(R), p is prime, and R is presimplifiable. We show the necessity of n = p m , and we prove the sufficiency when n = 2, 3, 4. These results were made possible by a new formula derived herein for the circulant determinantal coefficients.  相似文献   

16.
A right module M over a ring R is said to be retractable if Hom R (M, N) ≠ 0 for each nonzero submodule N of M. We show that M ? R RG is a retractable RG-module if and only if M R is retractable for every finite group G. The ring R is (finitely) mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.  相似文献   

17.
Dave Benson  Leonard Evens 《代数通讯》2013,41(10):3447-3451

In this article, we call a ring R right generalized semiregular if for any a ∈ R there exist two left ideals P, L of R such that lr(a) = PL, where P ? Ra and Ra ∩ L is small in R. The class of generalized semiregular rings contains all semiregular rings and all AP-injective rings. Some properties of these rings are studied and some results about semiregular rings and AP-injective rings are extended. In addition, we call a ring R semi-π-regular if for any a ∈ R there exist a positive integer n and e 2 = e ∈ a n R such that (1 ? e)a n  ∈ J(R), the Jacobson radical of R. It is shown that a ring R is semi-π-regular if and only if R/J(R) is π-regular and idempotents can be lifted modulo J(R).  相似文献   

18.
In this paper, we introduce and study the dual notion of simple-direct-injective modules. Namely, a right R-module M is called simple-direct-projective if, whenever A and B are submodules of M with B simple and M/A ? B ?M, then A ?M. Several characterizations of simple-direct-projective modules are provided and used to describe some well-known classes of rings. For example, it is shown that a ring R is artinian and serial with J2(R) = 0 if and only if every simple-direct-projective right R-module is quasi-projective if and only if every simple-direct-projective right R -module is a D3-module. It is also shown that a ring R is uniserial with J2(R) = 0 if and only if every simple-direct-projective right R-module is a C3-module if and only if every simple-direct-injective right R -module is a D3-module.  相似文献   

19.
《代数通讯》2013,41(11):4285-4301
Abstract

Let M be a left R-module and F a submodule of M for any ring R. We call M F-semiregular if for every x ∈ M, there exists a decomposition M = A ⊕ B such that A is projective, A ≤ Rx and Rx ∩ B ≤ F. This definition extends several notions in the literature. We investigate some equivalent conditions to F-semiregular modules and consider some certain fully invariant submodules such as Z(M), Soc(M), δ(M). We prove, among others, that if M is a finitely generated projective module, then M is quasi-injective if and only if M is Z(M)-semiregular and M ⊕ M is CS. If M is projective Soc(M)-semiregular module, then M is semiregular. We also characterize QF-rings R with J(R)2 = 0.  相似文献   

20.
Let A be a commutative ring with nonzero identity, 1 ≤ n < ∞ be an integer, and R = A × A × … ×A (n times). The total dot product graph of R is the (undirected) graph TD(R) with vertices R* = R?{(0, 0,…, 0)}, and two distinct vertices x and y are adjacent if and only if x·y = 0 ∈ A (where x·y denote the normal dot product of x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices Z(R)* = Z(R)?{(0, 0,…, 0)}. It follows that each edge (path) of the classical zero-divisor graph Γ(R) is an edge (path) of ZD(R). We observe that if n = 1, then TD(R) is a disconnected graph and ZD(R) is identical to the well-known zero-divisor graph of R in the sense of Beck–Anderson–Livingston, and hence it is connected. In this paper, we study both graphs TD(R) and ZD(R). For a commutative ring A and n ≥ 3, we show that TD(R) (ZD(R)) is connected with diameter two (at most three) and with girth three. Among other things, for n ≥ 2, we show that ZD(R) is identical to the zero-divisor graph of R if and only if either n = 2 and A is an integral domain or R is ring-isomorphic to ?2 × ?2 × ?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号