首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《代数通讯》2013,41(11):4285-4301
Abstract

Let M be a left R-module and F a submodule of M for any ring R. We call M F-semiregular if for every x ∈ M, there exists a decomposition M = A ⊕ B such that A is projective, A ≤ Rx and Rx ∩ B ≤ F. This definition extends several notions in the literature. We investigate some equivalent conditions to F-semiregular modules and consider some certain fully invariant submodules such as Z(M), Soc(M), δ(M). We prove, among others, that if M is a finitely generated projective module, then M is quasi-injective if and only if M is Z(M)-semiregular and M ⊕ M is CS. If M is projective Soc(M)-semiregular module, then M is semiregular. We also characterize QF-rings R with J(R)2 = 0.  相似文献   

2.
Liang Shen  Jianlong Chen 《代数通讯》2013,41(10):3018-3025
Let R be an associative ring with identity. A unital right R-module M is called “strongly finite dimensional” if Sup{G.dim (M/N) | N ≤ M} < +∞, where G.dim denotes the Goldie dimension of a module. Properties of strongly finite dimensional modules are explored. It is also proved that: (1) If R is left F-injective and semilocal, then R is left finite dimensional. (2) R is right artinian if and only if R is right strongly finite dimensional and right semiartinian. Some known results are obtained as corollaries.  相似文献   

3.
A ring R is called left GP-injective if for any 0 ≠ a ∈ R, there exists n > 0 such that a n  ≠ 0 and a n R = r(l(a n )). It is proved that (1) every right Noetherian left GP-injective ring such that every complement left ideal is a left annihilator is a QF ring, (2) every left GP-injective ring with ACC on left annihilators such that every complement left ideal is a left annihilator is a QF ring, and (3) every left P-injective left CS ring satisfying ACC on essential right ideals is a QF ring. Several well-known results on QF rings are obtained as corollaries.  相似文献   

4.
《代数通讯》2013,41(12):5589-5603
Let R be a ring. For two fixed positive integers m and n, a right R-module M is called (m, n)-injective if every right R-homomorphism from an n-generated submodule of Rm to M extends to one from Rm to M. This definition unifies several definitions on generalizations of injectivity of modules. The aim of this paper is to investigate properties of the (m, n)-injective modules. Various results are developed, many extending known results.  相似文献   

5.
A right module M over a ring R is said to be retractable if Hom R (M, N) ≠ 0 for each nonzero submodule N of M. We show that M ? R RG is a retractable RG-module if and only if M R is retractable for every finite group G. The ring R is (finitely) mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.  相似文献   

6.
In this paper, we introduce and study the dual notion of simple-direct-injective modules. Namely, a right R-module M is called simple-direct-projective if, whenever A and B are submodules of M with B simple and M/A ? B ?M, then A ?M. Several characterizations of simple-direct-projective modules are provided and used to describe some well-known classes of rings. For example, it is shown that a ring R is artinian and serial with J2(R) = 0 if and only if every simple-direct-projective right R-module is quasi-projective if and only if every simple-direct-projective right R -module is a D3-module. It is also shown that a ring R is uniserial with J2(R) = 0 if and only if every simple-direct-projective right R-module is a C3-module if and only if every simple-direct-injective right R -module is a D3-module.  相似文献   

7.
Lixin Mao 《代数通讯》2013,41(2):708-731
A ring R is called left P-coherent in case each principal left ideal of R is finitely presented. A left R-module M (resp. right R-module N) is called D-injective (resp. D-flat) if Ext1(G, M) = 0 (resp. Tor1(N, G) = 0) for every divisible left R-module G. It is shown that every left R-module over a left P-coherent ring R has a divisible cover; a left R-module M is D-injective if and only if M is the kernel of a divisible precover A → B with A injective; a finitely presented right R-module L over a left P-coherent ring R is D-flat if and only if L is the cokernel of a torsionfree preenvelope K → F with F flat. We also study the divisible and torsionfree dimensions of modules and rings. As applications, some new characterizations of von Neumann regular rings and PP rings are given.  相似文献   

8.
An R-module M is called strongly duo if Tr(N, M) = N for every N ≤ M R . Several equivalent conditions to being strongly duo are given. If M R is strongly duo and reduced, then End R (M) is a strongly regular ring and the converse is true when R is a Dedekind domain and M R is torsion. Over certain rings, nonsingular strongly duo modules are precisely regular duo modules. If R is a Dedekind domain, then M R is strongly duo if and only if either MR or M R is torsion and duo. Over a commutative ring, strongly duo modules are precisely pq-injective duo modules and every projective strongly duo module is a multiplication module. A ring R is called right strongly duo if R R is strongly duo. Strongly regular rings are precisely reduced (right) strongly duo rings. A ring R is Noetherian and all of its factor rings are right strongly duo if and only if R is a serial Artinian right duo ring.  相似文献   

9.
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M = Z 2(M) ⊕ S(M) (where Z 2(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.  相似文献   

10.
Let R be a ring with identity and let M be a unital left R-module. A proper submodule L of M is radical if L is an intersection of prime submodules of M. Moreover, a submodule L of M is isolated if, for each proper submodule N of L, there exists a prime submodule K of M such that N ? K but L ? K. It is proved that every proper submodule of M is radical (and hence every submodule of M is isolated) if and only if N ∩ IM = IN for every submodule N of M and every (left primitive) ideal I of R. In case, R/P is an Artinian ring for every left primitive ideal P of R it is proved that a finitely generated submodule N of a nonzero left R-module M is isolated if and only if PN = N ∩ PM for every left primitive ideal P of R. If R is a commutative ring, then a finitely generated submodule N of a projective R-module M is isolated if and only if N is a direct summand of M.  相似文献   

11.
Hongbo Zhang 《代数通讯》2013,41(4):1420-1427
An element of a ring R is called “strongly clean” if it is the sum of an idempotent and a unit that commute, and R is called “strongly clean” if every element of R is strongly clean. A module M is called “strongly clean” if its endomorphism ring End(M) is a strongly clean ring. In this article, strongly clean modules are characterized by direct sum decompositions, that is, M is a strongly clean module if and only if whenever M′⊕ B = A 1A 2 with M′? M, there are decompositions M′ = M 1M 2, B = B 1B 2, and A i  = C i D i (i = 1,2) such that M 1B 1 = C 1D 2 = M 1C 1 and M 2B 2 = D 1C 2 = M 2C 2.  相似文献   

12.
13.
A right R-module M is called simple-direct-injective if, whenever, A and B are simple submodules of M with A?B, and B?M, then A?M. Dually, M is called simple-direct-projective if, whenever, A and B are submodules of M with MA?B?M and B simple, then A?M. In this paper, we continue our investigation of these classes of modules strengthening many of the established results on the subject. For example, we show that a ring R is uniserial (artinian serial) with J2(R) = 0 iff every simple-direct-projective right R-module is an SSP-module (SIP-module) iff every simple-direct-injective right R-module is an SIP-module (SSP-module).  相似文献   

14.
Let R be a ring and β×α(R) (? β×α(R)) the set of all β × α full (row finite) matrices over R where α and β ≥ 1 are two cardinal numbers. A left R-module M is said to be “injective relative” to a matrix A ? ? β×α(R) if every R-homomorphism from R (β) A to M extends to one from R (α) to M. It is proved that M is injective relative to A if and only if it is A-pure in every module which contains M as a submodule. A right R-module N is called flat relative to a matrix A ?  β×α(R) if the canonical map μ: N? R (β) A → N α is a monomorphism. This extends the notion of (m, n)-flat modules so that n-projectivity, finitely projectivity, and τ-flatness can be redefined in terms of flatness relative to certain matrices. R is called left coherent relative to a matrix A ?  β×α(R) if R (β) A is a left R-ML module. Some results on τ-coherent rings and (m, n)-coherent rings are extended.  相似文献   

15.
《代数通讯》2013,41(10):5105-5116
Abstract

A ring R is called left IP-injective if every homomorphism from a left ideal of R into R with principal image is given by right multiplication by an element of R. It is shown that R is left IP-injective if and only if R is left P-injective and left GIN (i.e., r(I ∩ K) = r(I) + r(K) for each pair of left ideals I and K of R with I principal). We prove that R is QF if and only if R is right noetherian and left IP-injective if and only if R is left perfect, left GIN and right simple-injective. We also show that, for a right CF left GIN-ring R, R is QF if and only if Soc(R R ) ? Soc( R R). Two examples are given to show that an IP-injective ring need not be self-injective and a right IP-injective ring is not necessarily left IP-injective respectively.  相似文献   

16.
17.
《代数通讯》2013,41(9):4195-4214
Abstract

For a ring S, let K 0(FGFl(S)) and K 0(FGPr(S)) denote the Grothendieck groups of the category of all finitely generated flat S-modules and the category of all finitely generated projective S-modules respectively. We prove that a semilocal ring Ris semiperfect if and only if the group homomorphism K 0(FGFl(R)) → K 0(FGFl(R/J(R))) is an epimorphism and K 0(FGFl(R)) = K 0(FGPr(R)).  相似文献   

18.
Lixin Mao 《代数通讯》2013,41(7):2403-2418
Let R be a ring, and n and d fixed non-negative integers. An R-module M is called (n, d)-injective if Ext d+1 R (P, M) = 0 for any n-presented R-module P. M is said to be (n, d)-projective if Ext1 R (M, N) = 0 for any (n, d)-injective R-module N. We use these concepts to characterize n-coherent rings and (n, d)-rings. Some known results are extended.  相似文献   

19.
We study injective hulls of simple modules over differential operator rings R[θ; d], providing necessary conditions under which these modules are locally Artinian. As a consequence, we characterize Ore extensions of S = K[x][θ; σ, d] for σ a K-linear automorphism and d a K-linear σ-derivation of K[x] such that injective hulls of simple S-modules are locally Artinian.  相似文献   

20.
Dave Benson  Leonard Evens 《代数通讯》2013,41(10):3447-3451

In this article, we call a ring R right generalized semiregular if for any a ∈ R there exist two left ideals P, L of R such that lr(a) = PL, where P ? Ra and Ra ∩ L is small in R. The class of generalized semiregular rings contains all semiregular rings and all AP-injective rings. Some properties of these rings are studied and some results about semiregular rings and AP-injective rings are extended. In addition, we call a ring R semi-π-regular if for any a ∈ R there exist a positive integer n and e 2 = e ∈ a n R such that (1 ? e)a n  ∈ J(R), the Jacobson radical of R. It is shown that a ring R is semi-π-regular if and only if R/J(R) is π-regular and idempotents can be lifted modulo J(R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号