首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The following theorem is proved. Let n be a positive integer and q a power of a prime p. There exists a number m = m(n, q) depending only on n and q such that if G is any residually finite group satisfying the identity ([x 1,n y 1] ⋯ [x m,n y m ])q ≡ 1, then the verbal subgroup of G corresponding to the nth Engel word is locally finite.  相似文献   

2.
The following theorem is proved. Let n be a positive integer and q a power of a prime p. There exists a number m = m(n, q) depending only on n and q such that if G is any residually finite group satisfying the identity ([x 1,n y 1] ⋯ [x m,n y m ])q ≡ 1, then the verbal subgroup of G corresponding to the nth Engel word is locally finite.  相似文献   

3.
Peter G. Crosby 《代数通讯》2013,41(11):3998-4001
We observe that there exists a positive integer c(n) such that for every locally nilpotent n-Engel group G we have that G/Z c(n)(G) is of n-bounded exponent. This strengthens a result of Burns and Medvedev.  相似文献   

4.
The following result is proved. Let w be a multilinear commutator and n a positive integer. Suppose that G is a residually finite group in which every product of at most 896 w-values has order dividing n. Then the verbal subgroup w(G) is locally finite.  相似文献   

5.
Let w(x, y) be a word in two variables and 𝔚 the variety determined by w. In this paper we raise the following question: if for every pair of elements a, b in a group G there exists g ∈ G such that w(a g , b) = 1, under what conditions does the group G belong to 𝔚? In particular, we consider the n-Engel word w(x, y) = [x, n y]. We show that in this case the property is satisfied when the group G is metabelian. If n = 2, then we extend this result to the class of all solvable groups.  相似文献   

6.
 The following result is proved. Let G be a residually finite group satisfying the identity ([x 1, x 2][x 3, x 4]) n  ≡ 1 for a positive integer n that is not divisible by p 2 q 2 for any distinct primes p and q. Then G′ is locally finite. Received 7 May 2001; in revised form 3 December 2001  相似文献   

7.
Hanna Neumann asked whether it was possible for two non-isomorphic residually nilpotent finitely generated (fg) groups, one of them free, to share the lower central sequence. Baumslag answered the question in the affirmative and thus gave rise to parafree groups. A group G is termed parafree of rank n if it is residually nilpotent and shares the same lower central sequence with a free group of rank n. The deviation of a fg parafree group G of rank n is the difference μ(G) ? n, where μ(G) is the minimum possible number of generators of G.

Let G be fg; then Hom(G, SL 2?) inherits the structure of an algebraic variety, denoted by R(G). If G is an n generated parafree group, then the deviation of G is 0 iff Dim(R(G)) = 3n. It is known that for n ≥ 2 there exist infinitely many parafree groups of rank n and deviation 1 with non-isomorphic representation varieties of dimension 3n. In this paper it is shown that given integers n ≥ 2 and k ≥ 1, there exists infinitely many parafree groups of rank n and deviation k with non-isomorphic representation varieties of dimension different from 3n; in particular, there exist infinitely many parafree groups G of rank n with Dim(R(G)) > q, where q ≥ 3n is an arbitrary integer.  相似文献   

8.
Let G be any group and x an automorphism of G. The automorphism x is said to be nil if, for every gG, there exists n = n(g) such that [g, n x] = 1. If n can be chosen independently of g, we say that x is n-unipotent. A nil (resp. unipotent) automorphism x could also be seen as a left Engel element (resp. left n-Engel element) in the group Gx〉. When G is a finite dimensional vector space, groups of unipotent linear automorphisms turn out to be nilpotent, so that one might ask to what extent this result can be extended to a more general setting. In this paper we study finitely generated groups of nil or unipotent automorphisms of groups with residual properties (e.g. locally graded groups, residually finite groups, profinite groups), proving that such groups are nilpotent.  相似文献   

9.
For any integer n ≠ 0,1, a group G is said to be “n-Bell” if it satisfies the identity [x n ,y] = [x,y n ]. It is known that if G is an n-Bell group, then the factor group G/Z 2(G) has finite exponent dividing 12n 5(n ? 1)5. In this article we show that this bound can be improved. Moreover, we prove that every n-Bell group is n-nilpotent; consequently, using results of Baer on finite n-nilpotent groups, we give the structure of locally finite n-Bell groups. Finally, we are concerned with locally graded n-Bell groups for special values of n.  相似文献   

10.
11.
12.
The following result is proved. Let n be a positive integer and G a residually finite group in which every product of at most 68 commutators has order dividing n. Then G′ is locally finite.  相似文献   

13.
Bijan Taeri 《代数通讯》2013,41(3):894-922
Let n be an integer greater than 1. A group G is said to be n-rewritable whenever for every n elements x 1,…,x n of G, there exist distinct permutations τ, σ on the set {1,2,…, n} such that x τ(1) ··· x τ(n) = x σ (1) ··· x σ (n). In this article, we complete the classification of 3-rewritable finite nilpotent groups and prove that a finite nilpotent group G is 3-rewritable if and only if G has an abelian subgroup of index 2 or the derived subgroup has order < 6.  相似文献   

14.
Given a graph G with weighting w: E(G) ← Z+, the Strength of G(w) is the maximum weight on any edge. The sum of a vertex in G(w) is the sum of the weights of all its incident edges. The network G(w) is irregular if the vertex sums are distinct. The irregularity strength of G is the minimum strength of the graph under all irregular weightings. In this paper we determine the irregularity strength of the m × n grid for certain m and n. In particular, for every positive integer d we find the irregularity strength for all but a finite number of m × n grids where n - m = d. In addition, we present a general lower bound for the irregularity strength of graphs. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
Let mn be positive integers and p a prime. We denote by \(\nu (G)\) an extension of the non-abelian tensor square \(G \otimes G\) by \(G \times G\). We prove that if G is a residually finite group satisfying some non-trivial identity \(f \equiv ~1\) and for every \(x,y \in G\) there exists a p-power \(q=q(x,y)\) such that \([x,y^{\varphi }]^q = 1\), then the derived subgroup \(\nu (G)'\) is locally finite (Theorem A). Moreover, we show that if G is a residually finite group in which for every \(x,y \in G\) there exists a p-power \(q=q(x,y)\) dividing \(p^m\) such that \([x,y^{\varphi }]^q\) is left n-Engel, then the non-abelian tensor square \(G \otimes G\) is locally virtually nilpotent (Theorem B).  相似文献   

16.
The nilpotent graph of a group G is a simple graph whose vertex set is G?nil(G), where nil(G) = {y ∈ G | ? x, y ? is nilpotent ? x ∈ G}, and two distinct vertices x and y are adjacent if ? x, y ? is nilpotent. In this article, we show that the collection of finite non-nilpotent groups whose nilpotent graphs have the same genus is finite, derive explicit formulas for the genus of the nilpotent graphs of some well-known classes of finite non-nilpotent groups, and determine all finite non-nilpotent groups whose nilpotent graphs are planar or toroidal.  相似文献   

17.
N. Ahanjideh  M. Ahanjideh 《代数通讯》2013,41(11):4116-4145
In this article, we prove a conjecture of J. G. Thompson for the finite simple group 2 D n (q). More precisely, we show that every finite group G with the property Z(G) = 1 and N(G) = N(2 D n (q)) is necessarily isomorphic to 2 D n (q). Note that N(G) is the set of lengths of conjugacy classes of G.  相似文献   

18.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

19.
A group G is called a Camina group if G′ ≠ G and each element x ∈ G?G′ satisfies the equation x G  = xG′, where x G denotes the conjugacy class of x in G. Finite Camina groups were introduced by Alan Camina in 1978, and they had been studied since then by many authors. In this article, we start the study of infinite Camina groups. In particular, we characterize infinite Camina groups with a finite G′ (see Theorem 3.1) and we show that infinite non-abelian finitely generated Camina groups must be nonsolvable (see Theorem 4.3). We also describe locally finite Camina groups, residually finite Camina groups (see Section 3) and some periodic solvable Camina groups (see Section 5).  相似文献   

20.
A group G is said to be in Ek*E_k^* (k a positive integer), if every infinite subset of G contains a pair of elements that generate a k-Engel group.¶It is shown that a finitely generated locally graded group G in Ek*E_k^* is a finite-by- (k-Engel) group, in particular a finite extension of a k-Engel group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号