首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let R be a commutative ring with nonzero identity and Z(R) its set of zero-divisors. The zero-divisor graph of R is Γ(R), with vertices Z(R)?{0} and distinct vertices x and y are adjacent if and only if xy = 0. For a proper ideal I of R, the ideal-based zero-divisor graph of R is Γ I (R), with vertices {x ∈ R?I | xy ∈ I for some y ∈ R?I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we study the relationship between the two graphs Γ(R) and Γ I (R). We also determine when Γ I (R) is either a complete graph or a complete bipartite graph and investigate when Γ I (R) ? Γ(S) for some commutative ring S.  相似文献   

2.
ABSTRACT

Let R be a commutative ring with nonzero identity and let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by Γ I (R), is the graph whose vertices are the set {x ? R\I | xy ? I for some y ? R\I} with distinct vertices x and y adjacent if and only if xy ? I. In the case I = 0, Γ0(R), denoted by Γ(R), is the zero-divisor graph which has well known results in the literature. In this article we explore the relationship between Γ I (R) ? Γ J (S) and Γ(R/I) ? Γ(S/J). We also discuss when Γ I (R) is bipartite. Finally we give some results on the subgraphs and the parameters of Γ I (R).  相似文献   

3.
Ayman Badawi 《代数通讯》2013,41(1):108-121
Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and if a ∈ Z(R), then let ann R (a) = {d ∈ R | da = 0}. The annihilator graph of R is the (undirected) graph AG(R) with vertices Z(R)* = Z(R)?{0}, and two distinct vertices x and y are adjacent if and only if ann R (xy) ≠ ann R (x) ∪ ann R (y). It follows that each edge (path) of the zero-divisor graph Γ(R) is an edge (path) of AG(R). In this article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is connected with diameter at most two and with girth at most four provided that AG(R) has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph AG(R) is identical to the zero-divisor graph Γ(R) if and only if R has exactly two minimal prime ideals.  相似文献   

4.
《Quaestiones Mathematicae》2013,36(5):613-629
Abstract

Let R be a commutative ring with nonzero identity, and let I be an ideal of R. The ideal-based zero-divisor graph of R, denoted by ΓI (R), is the graph whose vertices are the set {xR \ I| xyI for some yR \ I} and two distinct vertices x and y are adjacent if and only if xyI. Define the comaximal graph of R, denoted by CG(R), to be a graph whose vertices are the elements of R, where two distinct vertices a and b are adjacent if and only if Ra+Rb=R. A nonempty set S ? V of a graph G=(V, E) is a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number γ(G) of G is the minimum cardinality among the dominating sets of G. The main object of this paper is to study the dominating sets and domination number of ΓI (R) and the comaximal graph CG2(R) \ J (R) (or CGJ (R) for short) where CG2(R) is the subgraph of CG(R) induced on the nonunit elements of R and J (R) is the Jacobson radical of R.  相似文献   

5.
Shane P. Redmond 《代数通讯》2013,41(7):2389-2401
For a commutative ring R with identity, the zero-divisor graph, Γ(R), is the graph with vertices the nonzero zero-divisors of R and edges between distinct vertices x and y whenever xy = 0. This article gives a proof that the radius of Γ(R) is 0, 1, or 2 if R is Noetherian. The center union {0} is shown to be a union of annihilator ideals if R is Artinian. The diameter of Γ(R) can be determined once the center is identified. If R is finite, then the median is shown to be a subset of the center. A dominating set of Γ(R) is constructed using elements of the center when R is Artinian. It is shown that for a finite ring R ? ?2 × F for some finite field F, the domination number of Γ(R) is equal to the number of distinct maximal ideals of R. Other results on the structure of Γ(R) are also presented.  相似文献   

6.
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is Γ(R) = Z(R)\{0}, with distinct vertices x and y adjacent if and only if xy = 0. In this article, we study Γ(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that {0} ≠ Nil(R) ? zR for all z ∈ Z(R)\Nil(R).  相似文献   

7.
Let G = (V, E) be a graph. A set S ? V is a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number γ(G) of G is the minimum cardinality among the dominating sets of G. The main object of this article is to study and characterize the dominating sets of the zero-divisor graph Γ(R) and ideal-based zero-divisor graph Γ I (R) of a commutative ring R.  相似文献   

8.
Let R be a commutative ring. In this paper, we introduce and study the compressed annihilator graph of R. The compressed annihilator graph of R is the graph AGE(R), whose vertices are equivalence classes of zero-divisors of R and two distinct vertices [x] and [y] are adjacent if and only if ann(x)∪ann(y) ? ann(xy). For a reduced ring R, we show that compressed annihilator graph of R is identical to the compressed zero-divisor graph of R if and only if 0 is a 2-absorbing ideal of R. As a consequence, we show that an Artinian ring R is either local or reduced whenever 0 is a 2-absorbing ideal of R.  相似文献   

9.
Let A be a commutative ring with nonzero identity, 1 ≤ n < ∞ be an integer, and R = A × A × … ×A (n times). The total dot product graph of R is the (undirected) graph TD(R) with vertices R* = R?{(0, 0,…, 0)}, and two distinct vertices x and y are adjacent if and only if x·y = 0 ∈ A (where x·y denote the normal dot product of x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices Z(R)* = Z(R)?{(0, 0,…, 0)}. It follows that each edge (path) of the classical zero-divisor graph Γ(R) is an edge (path) of ZD(R). We observe that if n = 1, then TD(R) is a disconnected graph and ZD(R) is identical to the well-known zero-divisor graph of R in the sense of Beck–Anderson–Livingston, and hence it is connected. In this paper, we study both graphs TD(R) and ZD(R). For a commutative ring A and n ≥ 3, we show that TD(R) (ZD(R)) is connected with diameter two (at most three) and with girth three. Among other things, for n ≥ 2, we show that ZD(R) is identical to the zero-divisor graph of R if and only if either n = 2 and A is an integral domain or R is ring-isomorphic to ?2 × ?2 × ?2.  相似文献   

10.
11.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all noncentral elements of R, and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this article we investigate some graph-theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields F and E and integers n, m ≥ 2, if Γ(M n (F))?Γ(M m (E)), then n = m and |F|=|E|.  相似文献   

12.
Lixin Mao 《代数通讯》2013,41(2):593-606
Let R be a ring. M is said to be a minannihilator left R-module if r M l R (I) = IM for any simple right ideal I of R. A right R-module N is called simple-flat if Nl R (I) = l N (I) for any simple right ideal I of R. R is said to be a left simple-Baer (resp., left simple-coherent) ring if the left annihilator of every simple right ideal is a direct summand of R R (resp., finitely generated). We first obtain some properties of minannihilator and simple-flat modules. Then we characterize simple-coherent rings, simple-Baer rings, and universally mininjective rings using minannihilator and simple-flat modules.  相似文献   

13.
Let (R, 𝔪) be a commutative, noetherian, local ring, E the injective hull of the residue field R/𝔪, and M ○○ = Hom R (Hom R (M, E), E) the bidual of an R-module M. We investigate the elements of Ass(M ○○) as well as those of Coatt(M) = {𝔭 ∈ Spec(R)|𝔭 = Ann R (Ann M (𝔭))} and provide criteria for equality in one of the two inclusions Ass(M) ? Ass(M ○○) ? Coatt(M). If R is a Nagata ring and M a minimax module, i.e., an extension of a finitely generated R-module by an artinian R-module, we show that Ass(M ○○) = Ass(M) ∪ {𝔭 ∈ Coatt(M)| R/𝔭 is incomplete}.  相似文献   

14.
Dancheng Lu  Tongsuo Wu 《代数通讯》2013,41(12):3855-3864
A nonempty simple connected graph G is called a uniquely determined graph, if distinct vertices of G have distinct neighborhoods. We prove that if R is a commutative ring, then Γ(R) is uniquely determined if and only if either R is a Boolean ring or T(R) is a local ring with x2 = 0 for any x ∈ Z(R), where T(R) is the total quotient ring of R. We determine all the corresponding rings with characteristic p for any finite complete graph, and in particular, give all the corresponding rings of Kn if n + 1 = pq for some primes p, q. Finally, we show that a graph G with more than two vertices has a unique corresponding zero-divisor semigroup if G is a zero-divisor graph of some Boolean ring.  相似文献   

15.
Ming-Chu Chou 《代数通讯》2013,41(2):898-911
Let R be a prime ring, L a noncentral Lie ideal of R, and a ∈ R. Set [x, y]1 = [x, y] = xy ? yx for x, y ∈ R and inductively [x, y]k = [[x, y]k?1, y] for k > 1. Suppose that δ is a nonzero σ-derivation of R such that a[δ(x), x]k = 0 for all x ∈ L, where σ is an automorphism of R and k is a fixed positive integer. Then a = 0 except when char R = 2 and R ? M2(F), the 2 × 2 matrix ring over a field F.  相似文献   

16.
《代数通讯》2013,41(10):5003-5010
Abstract

Let R be a prime ring of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, a ∈ R, S 4(x 1,…, x 4) the standard polynomial in 4 variables. Suppose that, for any x, y ∈ I, a[d([x, y]), [x, y]] = 0. If S 4(I, I, I, I)I ≠ 0, then aI = ad(I) = 0.  相似文献   

17.
The zero-divisor graph of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy=0. In this paper, a decomposition theorem is provided to describe weakly central-vertex complete graphs of radius 1. This characterization is then applied to the class of zero-divisor graphs of commutative rings. For finite commutative rings whose zero-divisor graphs are not isomorphic to that of Z4[X]/(X2), it is shown that weak central-vertex completeness is equivalent to the annihilator condition. Furthermore, a schema for describing zero-divisor graphs of radius 1 is provided.  相似文献   

18.
In this paper, we are interested to study zero-divisor properties of a 0-symmetric nearring of polynomials R0[x], when R is a commutative ring. We show that for a reduced ring R, the set of all zero-divisors of R0[x], namely Z(R0[x]), is an ideal of R0[x] if and only if Z(R) is an ideal of R and R has Property (A). For a non-reduced ring R, it is shown that Z(R0[x]) is an ideal of Z(R0[x]) if and only if annR({a, b}) ∩ N i?(R) ≠ 0, for each a, bZ(R). We also investigate the interplay between the algebraic properties of a 0-symmetric nearring of polynomials R0[x] and the graph-theoretic properties of its zero-divisor graph. The undirected zero-divisor graph of R0[x] is the graph Γ(R0[x]) such that the vertices of Γ(R0[x]) are all the non-zero zero-divisors of R0[x] and two distinct vertices f and g are connected by an edge if and only if f ? g = 0 or g ? f = 0. Among other results, we give a complete characterization of the possible diameters of Γ(R0[x]) in terms of the ideals of R. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its “multiplication” operation.  相似文献   

19.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all noncentral elements of R and two distinct vertices are joint by an edge whenever they commute. It is conjectured that if R is a ring with identity such that Γ(R) ≈ Γ(M n (F)), for a finite field F and n ≥ 2, then RM n (F). Here we prove this conjecture when n = 2.  相似文献   

20.
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)?{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号