首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nik Stopar 《代数通讯》2013,41(6):2053-2065
We describe surjective additive maps θ: A → B which preserve zero products, where A is a ring with a nontrivial idempotent and B is a prime ring. We also characterize surjective additive maps θ: A → B such that for all x, y ∈ A we have θ(x)θ(y)* = 0 if and only if xy* = 0. Here A is a unital prime ring with involution that contains a nontrivial idempotent and B is a prime ring with involution.  相似文献   

2.
Let R be a commutative ring with identity. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R is weakly prime (resp., almost prime) if a, b ∈ R with ab ∈ I ? {0} (resp., ab ∈ I ? I 2) implies a ∈ I or b ∈ I. Let φ:?(R) → ?(R) ∪ {?} be a function where ?(R) is the set of ideals of R. We call a proper ideal I of R a φ-prime ideal if a, b ∈ R with ab ∈ I ? φ(I) implies a ∈ I or b ∈ I. So taking φ?(J) = ? (resp., φ0(J) = 0, φ2(J) = J 2), a φ?-prime ideal (resp., φ0-prime ideal, φ2-prime ideal) is a prime ideal (resp., weakly prime ideal, almost prime ideal). We show that φ-prime ideals enjoy analogs of many of the properties of prime ideals.  相似文献   

3.
H. Guzzo Jr.  A. Behn 《代数通讯》2013,41(1):417-422
We studied the solvability of the algebra which satisfies the polynomial identity (x 2)2 = 0. We believe that, if A is a finite dimensional commutative algebra over a field F of characteristic not 2 which satisfies (x 2)2 = 0 for all x ∈ A, then A is solvable. In this article we proved this when dim  F A ≤ 7.  相似文献   

4.
T.-S. Chen 《代数通讯》2013,41(12):4457-4466
ABSTRACT

Let A = A 0 ⊕ A 1 be an associative superalgebra over a commutative associative ring F, and let Z s (A) be its supercenter. An F-mapping f of A into itself is called supercentralizing on a subset S of A if [x, f(x)] s  ∈ Z s (A) for all x ∈ S. In this article, we prove a version of Posner's theorem for supercentralizing superderivations on prime superalgebras.  相似文献   

5.
Let R be a noncommutative prime ring and I a nonzero left ideal of R. Let g be a generalized derivation of R such that [g(r k ), r k ] n  = 0 for all r ∈ I, where k, n are fixed positive integers. Then there exists c ∈ U, the left Utumi quotient ring of R, such that g(x) = xc and I(c ? α) = 0 for a suitable α ∈ C. In particular we have that g(x) = α x, for all x ∈ I.  相似文献   

6.
Let (A, B) be a nonempty bounded closed convex proximal parallel pair in a nearly uniformly convex Banach space and T: AB → AB be a continuous and asymptotically relatively nonexpansive map. We prove that there exists x ∈ AB such that ‖x ? Tx‖ = dist(A, B) whenever T(A) ? B, T(B) ? A. Also, we establish that if T(A) ? A and T(B) ? B, then there exist x ∈ A and y ∈ B such that Tx = x, Ty = y and ‖x ? y‖ = dist(A, B). We prove the aforementioned results when the pair (A, B) has the rectangle property and property UC. In the case of A = B, we obtain, as a particular case of our results, the basic fixed point theorem for asymptotically nonexpansive maps by Goebel and Kirk.  相似文献   

7.
Given A and B two nonempty subsets in a metric space, a mapping T: AB → AB is relatively nonexpansive if d(Tx, Ty) ≤ d(x, y) for every x ∈ A, y ∈ B. A best proximity point for such a mapping is a point x ∈ AB such that d(x, Tx) = dist(A, B). In this work, we extend the results given in Eldred et al. (2005) [A.A. Eldred, W.A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171, 283–293] for relatively nonexpansive mappings in Banach spaces to more general metric spaces. Namely, we give existence results of best proximity points for cyclic and noncyclic relatively nonexpansive mappings in the context of Busemann convex reflexive metric spaces. Moreover, particular results are proved in the setting of CAT(0) and uniformly convex geodesic spaces. Finally, we show that proximal normal structure is a sufficient but not necessary condition for the existence in A × B of a pair of best proximity points.  相似文献   

8.
Matej Brešar 《代数通讯》2013,41(1):154-163
Let 𝒜 be a ring, let ? be an 𝒜-bimodule, and let 𝒞 be the center of ?. A map F:𝒜 → ? is said to be range-inclusive if [F(x), 𝒜] ? [x, ?] for every x ∈ 𝒜. We show that if 𝒜 contains idempotents satisfying certain technical conditions (which we call wide idempotents), then every range-inclusive additive map F:𝒜 → ? is of the form F(x) = λx + μ(x) for some λ ∈ 𝒞 and μ:𝒜 → 𝒞. As a corollary we show that if 𝒜 is a prime ring containing an idempotent different from 0 and 1, then every range-inclusive additive map from 𝒜 into itself is commuting (i.e., [F(x), x] = 0 for every x ∈ 𝒜).  相似文献   

9.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

10.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

11.
12.
Jui-Chi Chang 《代数通讯》2013,41(6):2241-2248
Let R be a prime ring with center Z and L a noncommutative Lie ideal of R. Suppose that f is a right generalized β-derivation of R associated with a β-derivation δ such that f(x) n  ∈ Z for all x ∈ L, where n is a fixed positive integer. Then f = 0 unless dim  C RC = 4.  相似文献   

13.
Let R be a non-commutative prime ring of characteristic different from 2, U its right Utumi quotient ring, C its extended centroid, F a generalized derivation on R, and f(x 1,…, x n ) a noncentral multilinear polynomial over C. If there exists a ∈ R such that, for all r 1,…, r n  ∈ R, a[F 2(f(r 1,…, r n )), f(r 1,…, r n )] = 0, then one of the following statements hold: 1. a = 0;

2. There exists λ ∈C such that F(x) = λx, for all x ∈ R;

3. There exists c ∈ U such that F(x) = cx, for all x ∈ R, with c 2 ∈ C;

4. There exists c ∈ U such that F(x) = xc, for all x ∈ R, with c 2 ∈ C.

  相似文献   

14.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

15.
Let R be a noncommutative prime ring and d, δ two nonzero derivations of R. If δ([d(x), x] n ) = 0 for all x ∈ R, then char R = 2, d 2 = 0, and δ = αd, where α is in the extended centroid of R. As an application, if char R ≠ 2, then the centralizer of the set {[d(x), x] n  | x ∈ R} in R coincides with the center of R.  相似文献   

16.
Abstract

Let A be a commutative ring with identity, let X, Y be indeterminates and let F(X,Y), G(X, Y) ∈ A[X, Y] be homogeneous. Then the pair F(X, Y), G(X, Y) is said to be radical preserving with respect to A if Rad((F(x, y), G(x, y))R) = Rad((x,y)R) for each A-algebra R and each pair of elements x, y in R. It is shown that infinite sequences of pairwise radical preserving polynomials can be obtained by homogenizing cyclotomic polynomials, and that under suitable conditions on a ?-graded ring A these can be used to produce an infinite set of homogeneous prime ideals between two given homogeneous prime ideals P ? Q of A such that ht(Q/P) = 2.  相似文献   

17.
M. Shabani-Attar 《代数通讯》2013,41(6):2437-2442
Let G be a finite non-abelian p-group, where p is a prime. An automorphism α of G is called a class preserving automorphism if α(x) ∈ x G the conjugacy class of x in G, for all x ∈ G. An automorphism α of G is called an IA-automorphism if x ?1α(x) ∈ G′ for each x ∈ G. In this paper, we give necessary and sufficient conditions on finite p-group G of nilpotency class 2 such that every IA-automorphism is class preserving.  相似文献   

18.
AA-Rings     
《代数通讯》2013,41(10):3853-3860
Abstract

Let R be a ring with identity such that R +, the additive group of R, is torsion-free of finite rank (tffr). The ring R is called an E-ring if End(R +) = {x ? ax : a ∈ R} and is called an A-ring if Aut(R +) = {x ? ux : u ∈ U(R)}, where U(R) is the group of units of R. While E-rings have been studied for decades, the notion of A-rings was introduced only recently. We now introduce a weaker notion. The ring R, 1 ∈ R, is called an AA-ring if for each α ∈ Aut(R +) there is some natural number n such that α n  ∈ {x ? ux : u ∈ U(R)}. We will find all tffr AA-rings with nilradical N(R) ≠ {0} and show that all tffr AA-rings with N(R) = {0} are actually E-rings. As a consequence of our results on AA-rings, we are able to prove that all tffr A-rings are indeed E-rings.  相似文献   

19.
《代数通讯》2013,41(3):1219-1227
Abstract

A radical γ has the Amitsur property, if γ(A[x]) = (γ(A[x]) ∩ A)[x] for every ring A. To any radical γ with Amitsur property we construct the smallest radical γ x which coincides with γ on polynomial rings. Distinct special radicals with Amitsur property are given which coincide on simple rings and on polynomial rings, answering thus a stronger version of M. Ferrero's problem. Radicals γ with Amitsur property are characterized which satisfy A[x, y] ∈ γ whenever A[x] ∈ γ.  相似文献   

20.
Tomohiro Itagaki 《代数通讯》2013,41(8):3472-3497
In this article, we compute the Hochschild homology group of A = KΓ/(f(X s )), where KΓ is the path algebra of the cyclic quiver Γ with s vertices and s arrows over a commutative ring K, f(x) is a monic polynomial over K, and X is the sum of all arrows in KΓ. Moreover, we compute the cyclic homology group of A in the case f(x) = (x ? a) m , where a ∈ K, so that we can determine the cyclic homology of A in general when K is an algebraically closed field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号