首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all noncentral elements of R, and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this article we investigate some graph-theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields F and E and integers n, m ≥ 2, if Γ(M n (F))?Γ(M m (E)), then n = m and |F|=|E|.  相似文献   

3.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all noncentral elements of R and two distinct vertices are joint by an edge whenever they commute. It is conjectured that if R is a ring with identity such that Γ(R) ≈ Γ(M n (F)), for a finite field F and n ≥ 2, then RM n (F). Here we prove this conjecture when n = 2.  相似文献   

4.
Let D be an integral domain with quotient field K, X be an indeterminate over D, Γ be a numerical semigroup with Γ ? ?0, D[Γ] be the semigroup ring of Γ over D (and hence D ? D[Γ] ? D[X]), and D + X n K[X] = {a + X n ga ∈ D and g ∈ K[X]}. We show that there exists an order-preserving bijection between Spec(D[X]) and Spec(D[Γ]), which also preserves t-ideals. We also prove that D[Γ] is an APvMD (resp., AGCD-domain) if and only if D[X] is an APvMD (resp., AGCD-domain) and char(D) ≠ 0. We show that if n ≥ 2, then D is an APvMD (resp., AGCD-domain, AGGCD-domain, AP-domain, AB-domain) and char(D) ≠ 0 if and only if D + X n K[X] is an APvMD (resp., AGCD-domain, AGGCD-domain, AP-domain, AB-domain). Finally, we give some examples of APvMDs which are not AGCD-domains by using the constructions D[Γ] and D + X n K[X].  相似文献   

5.
We give a proof of the Poincaré inequality in W 1, p (Ω) with a constant that is independent of Ω ? , where  is a set of uniformly bounded and uniformly Lipschitz domains in ? n . As a byproduct, we obtain the following: The first non vanishing eigenvalues λ2(Ω) of the standard Neumann (variational) boundary value problem on Ω for the Laplace operator are bounded below by a positive constant if the domains Ω vary and remain uniformly bounded and uniformly Lipschitz regular.  相似文献   

6.
Gyu Whan Chang 《代数通讯》2013,41(10):4182-4187
Let α be an infinite cardinal number, Λ be an index set of cardinality > α, and {X λ}λ∈Λ be a set of indeterminates over an integral domain D. It is well known that there are three ways of defining the ring of formal power series in {X λ}λ∈Λ over D, say, D[[{X λ}]] i for i = 1, 2, 3. In this paper, we let D[[{X λ}]]α = ∪ {D[[{X λ}λ∈Γ]]3 | Γ ? Λ and |Γ| ≤ α}, and we then show that D[[{X λ}]]α is an integral domain such that D[[{X λ}]]2 ? D[[{X λ}]]α ? D[[{X λ}]]3. We also prove that (1) D is a Krull domain if and only if D[[{X λ}]]α is a Krull domain and (2) D[[{X λ}]]α is a unique factorization domain (UFD) (resp., π-domain) if and only if D[[X 1,…, X n ]] is a UFD (resp., π-domain) for every integer n ≥ 1.  相似文献   

7.
Let Γ denote a smooth simple curve in ? N , N ≥ 2, possibly with boundary. Let Ω R be the open normal tubular neighborhood of radius 1 of the expanded curve RΓ: = {Rx | x ∈ Γ??Γ}. Consider the superlinear problem ? Δu + λu = f(u) on the domains Ω R , as R → ∞, with homogeneous Dirichlet boundary condition. We prove the existence of multibump solutions with bumps lined up along RΓ with alternating signs. The function f is superlinear at 0 and at ∞, but it is not assumed to be odd. If the boundary of the curve is nonempty our results give examples of contractible domains in which the problem has multiple sign changing solutions.  相似文献   

8.
Let Ω be a local perturbation of the n-dimensional domain Ω0 = Ropf;n ? 1 × (0, π). In a previous paper8 we have introduced the notion of an admissible standing wave. We shall prove that the principle of limiting absorption holds for the Dirichlet problem of the reduced wave equation in Ω at ω ≥ 0 if Ω does not allow admissible standing waves with frequency ω. From Reference 8, this condition is satisfied for every ω ≥ 0 if Ω ≠ Ω0, and v · x ′ ≤ 0 on δΩ, where x′ = ( x 1,…, xn ? 1, 0) and v is the normal unit vector on δΩ pointing into the complement of Ω. In contrast to this, the principle of limiting absorption is violated in the case of the unperturbed domain Ω0 at the frequencies ω = 1,2,… if n ≤ 3. The second part of our investigation, which will appear in a subsequent paper, is devoted to the principle of limit amplitude.  相似文献   

9.
We consider a material that occupies a convex polygonal bounded domain Ω ⊂ ℝn, with regular boundary Γ = Γ1 ∪ Γ2 (with Γ ∩ Γ = ∅︁) with meas (Γ1) = |Γ1| > 0 and |Γ2| > 0. We assume, without loss of generality, that the melting temperature is 0°C. We consider the following steady‐state heat conduction problem in Ω: with α, q, B = Const > 0, and q and α represent the heat flux on Γ2 and the heat transfer coefficient on Γ1, respectively. In a previous article (Tabacman‐ Tarzia, J Diff Eq 77 (1989), 16– 37) sufficient and/or necessary conditions on data α, q, B, Ω, Γ1, Γ2 to obtain a temperature u of nonconstant sign in Ω (that is, a multidimensional steady‐state, two‐phase, Stefan problem) were studied. In this article, we consider a regular triangulation by finite element method of the domain Ω with Lagrange triangles of the type 1, with h > 0 the parameter of the discretization. We study sufficient (and/or necessary) conditions on data α, q, B, Ω, Γ1, and Γ2 to obtain a change of phase (steady‐state, two‐phase, discretized Stefan problem) in corresponding discretized domain, that is, a discrete temperature of nonconstant sign in Ω. Moreover, error bounds as a function of the parameter h, are also obtained. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq. 15: 355–369, 1999  相似文献   

10.
A graph Γ is said to be G-arc-regular if a subgroup $G \le\operatorname{\mathsf{Aut}}(\varGamma)$ acts regularly on the arcs of Γ. In this paper connected G-arc-regular graphs are classified in the case when G contains a regular dihedral subgroup D 2n of order 2n whose cyclic subgroup C n D 2n of index 2 is core-free in G. As an application, all regular Cayley maps over dihedral groups D 2n , n odd, are classified.  相似文献   

11.
In this article, we investigate the semistability of logarithmic de Rham sheaves on a smooth projective variety (X, D), under suitable conditions. This is related to existence of Kähler–Einstein metric on the open variety. We investigate this problem when the Picard number is one. Fix a normal crossing divisor D on X and consider the logarithmic de Rham sheaf Ω X (log D) on X. We prove semistability of this sheaf, when the log canonical sheaf K X  + D is ample or trivial, or when ?K X  ? D is ample, i.e., when X is a log Fano n-fold of dimension n ≤ 6. We also extend the semistability result for Kawamata coverings, and this gives examples whose Picard number can be greater than one.  相似文献   

12.
Gyu Whan Chang 《代数通讯》2013,41(7):2650-2664
Let D be an integral domain, S be a (saturated) multiplicative subset of D such that D ? D S , Γ be a numerical semigroup with Γ ? ?0, Γ* = Γ?{0}, X be an indeterminate over D, D + XD S [X] = {a + Xg ∈ D S [X]∣a ∈ D and g ∈ D S [X]}, and D + D S [Γ*] = {a + f ∈ D S [Γ]∣a ∈ D and f ∈ D S [Γ*]}; so D + D S [Γ*] ? D + XD S [X]. In this article, we study when D + D S [Γ*] is an APvMD, an AGCD-domain, an AS-domain, an AP-domain, or an AB-domain.  相似文献   

13.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

14.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non-central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. Let D be a division ring and n ? 3. In this paper we investigate the diameters of Γ(Mn(D)) and determine the diameters of some induced subgraphs of Γ(Mn(D)), such as the induced subgraphs on the set of all non-scalar non-invertible, nilpotent, idempotent, and involution matrices in Mn(D). For every field F, it is shown that if Γ(Mn(F)) is a connected graph, then diam Γ(Mn(F)) ? 6. We conjecture that if Γ(Mn(F)) is a connected graph, then diam Γ(Mn(F)) ? 5. We show that if F is an algebraically closed field or n is a prime number and Γ(Mn(F)) is a connected graph, then diam Γ(Mn(F)) = 4. Finally, we present some applications to the structure of pairs of idempotents which may prove of independent interest.  相似文献   

15.
Jing He  Adam Van Tuyl 《代数通讯》2013,41(5):1725-1742
The path ideal (of length t ≥ 2) of a directed graph Γ is the monomial ideal, denoted I t (Γ), whose generators correspond to the directed paths of length t in Γ. We study some of the algebraic properties of I t (Γ) when Γ is a tree. We first show that I t (Γ) is the facet ideal of a simplicial tree. As a consequence, the quotient ring R/I t (Γ) is always sequentially Cohen–Macaulay, and the Betti numbers of R/I t (Γ) do not depend upon the characteristic of the field. We study the case of the line graph in greater detail at the end of the article. We give an exact formula for the projective dimension of these ideals, and in some cases, we compute their arithmetical rank.  相似文献   

16.
《偏微分方程通讯》2013,38(1-2):91-109
Abstract

Let Ω be a bounded Lipschitz domain in ? n , n ≥ 3 with connected boundary. We study the Robin boundary condition ?u/?N + bu = f ∈ L p (?Ω) on ?Ω for Laplace's equation Δu = 0 in Ω, where b is a non-negative function on ?Ω. For 1 < p < 2 + ?, under suitable compatibility conditions on b, we obtain existence and uniqueness results with non-tangential maximal function estimate ‖(?u)*‖ p  ≤ Cf p , as well as a pointwise estimate for the associated Robin function. Moreover, the solution u is represented by a single layer potential.  相似文献   

17.
We consider the Aharonov–Bohm effect for the Schrödinger operator H = (?i? x  ? A(x))2 + V(x) and the related inverse problem in an exterior domain Ω in R 2 with Dirichlet boundary condition. We study the structure and asymptotics of generalized eigenfunctions and show that the scattering operator determines the domain Ω and H up to gauge equivalence under the equal flux condition. We also show that the flux is determined by the scattering operator if the obstacle Ω c is convex.  相似文献   

18.
We prove that the solution of the Neumann problem for the Helmholtz equation in a plane angle Ω with boundary conditions from the space H−1/2(Γ), where Γ is the boundary of Ω, which is provided by the well‐known Sommerfeld integral, belongs to the Sobolev space H1(Ω) and depends continuously on the boundary values. To this end, we use another representation of the solution given by the inverse two‐dimensional Fourier transform of an analytic function depending on the Cauchy data of the solution. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω ? ? n when the so-called Dirichlet-to-Neumann map is locally given on a non empty portion Γ of the boundary ?Ω. We extend results of uniqueness and stability at the boundary, obtained by the same authors in SIAM J. Math. Anal. 33:153–171, where the Dirichlet-to-Neumann map was given on all of ?Ω instead. We also obtain a pointwise stability result at the boundary among the class of conductivities which are continuous at some point y ∈ Γ. Our arguments also apply when the local Neumann-to-Dirichlet map is available.  相似文献   

20.
Let Γ be an X‐symmetric graph admitting an X‐invariant partition ?? on V(Γ) such that Γ?? is connected and (X, 2)‐arc transitive. A characterization of (Γ, X, ??) was given in [S. Zhou Eur J Comb 23 (2002), 741–760] for the case where |B|>|Γ(C)∩B|=2 for an arc (B, C) of Γ??.We con‐sider in this article the case where |B|>|Γ(C)∩B|=3, and prove that Γ can be constructed from a 2‐arc transitive graph of valency 4 or 7 unless its connected components are isomorphic to 3 K 2, C 6 or K 3, 3. As a byproduct, we prove that each connected tetravalent (X, 2)‐transitive graph is either the complete graph K 5 or a near n‐gonal graph for some n?4. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 232–245, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号