首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jian Cui  Jianlong Chen 《代数通讯》2013,41(9):3212-3221
A ring R is quasipolar if for any a ∈ R, there exists p 2 = p ∈ R such that p ∈ comm2(a), p + a ∈ U(R) and ap ∈ R qnil . In this article, we determine when a 2 × 2 matrix over a commutative local ring is quasipolar. A criterion in terms of solvability of the characteristic equation is obtained for such a matrix to be quasipolar. Consequently, we obtain several equivalent conditions for the 2 × 2 matrix ring over a commutative local ring to be quasipolar. Furthermore, it is shown that the 2 × 2 matrix ring over the ring of p-adic integers is quasipolar.  相似文献   

2.
3.
Dave Benson  Leonard Evens 《代数通讯》2013,41(10):3447-3451

In this article, we call a ring R right generalized semiregular if for any a ∈ R there exist two left ideals P, L of R such that lr(a) = PL, where P ? Ra and Ra ∩ L is small in R. The class of generalized semiregular rings contains all semiregular rings and all AP-injective rings. Some properties of these rings are studied and some results about semiregular rings and AP-injective rings are extended. In addition, we call a ring R semi-π-regular if for any a ∈ R there exist a positive integer n and e 2 = e ∈ a n R such that (1 ? e)a n  ∈ J(R), the Jacobson radical of R. It is shown that a ring R is semi-π-regular if and only if R/J(R) is π-regular and idempotents can be lifted modulo J(R).  相似文献   

4.
Let R be any commutative ring with identity, and let C be a (finite or infinite) cyclic group. We show that the group ring R(C) is presimplifiable if and only if its augmentation ideal I(C) is presimplifiable. We conjecture that the group rings R(C n ) are presimplifiable if and only if n = p m , p ∈ J(R), p is prime, and R is presimplifiable. We show the necessity of n = p m , and we prove the sufficiency when n = 2, 3, 4. These results were made possible by a new formula derived herein for the circulant determinantal coefficients.  相似文献   

5.
Frank Loose 《代数通讯》2013,41(7):2395-2416
Abstract

A ring R is called left P-injective if for every a ∈ R, aR = r(l(a)) where l? ) and r? ) denote left and right annihilators respectively. The ring R is called left GP-injective if for any 0 ≠ a ∈ R, there exists n > 0 such that a n  ≠ 0 and a n R = r(l(a n )). As a response to an open question on GP -injective rings, an example of a left GP-injective ring which is not left P-injective is given. It is also proved here that a ring R is left FP -injective if and only if every matrix ring 𝕄 n (R) is left GP-injective.  相似文献   

6.
The article concerns the question of when a generalized matrix ring K s (R) over a local ring R is quasipolar. For a commutative local ring R, it is proved that K s (R) is quasipolar if and only if it is strongly clean. For a general local ring R, some partial answers to the question are obtained. There exist noncommutative local rings R such that K s (R) is strongly clean, but not quasipolar. Necessary and sufficient conditions for a single matrix of K s (R) (where R is a commutative local ring) to be quasipolar is obtained. The known results on this subject in [5 Cui , J. , Chen , J. ( 2011 ). When is a 2 × 2 matrix ring over a commutative local ring quasipolar? Comm. Alg. 39 : 32123221 .[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]] are improved or extended.  相似文献   

7.
Huanyin Chen 《代数通讯》2013,41(9):3494-3506
An element a ∈ R is unit-regular provided that there exists an invertible u ∈ R such that a = aua. A ring R is called an almost unit-regular ring provided that for any a ∈ R, either a or 1 ? a is unit-regular. We characterize, in this article, the almost unit-regularity of Morita contexts with zero pairings. We also show that a ring R is unit-regular if and only if M 2(R) is almost unit-regular. Various examples of such rings are constructed by means of formal triangular matrix rings.  相似文献   

8.
We call a ring R a right SA-ring if for any ideals I and J of R there is an ideal K of R such that r(I) + r(J) = r(K). This class of rings is exactly the class of rings for which the lattice of right annihilator ideals is a sublattice of the lattice of ideals. The class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings (hence all right selfinjective rings). This class is closed under direct products, full and upper triangular matrix rings, certain polynomial rings, and two-sided rings of quotients. The right SA-ring property is a Morita invariant. For a semiprime ring R, it is shown that R is a right SA-ring if and only if R is a quasi-Baer ring if and only if r(I) + r(J) = r(IJ) for all ideals I and J of R if and only if Spec(R) is extremally disconnected. Examples are provided to illustrate and delimit our results.  相似文献   

9.
Huanyin Chen 《代数通讯》2013,41(5):1661-1673
A regular ring R is separative provided that for all finitely generated projective right R-modules A and B, AA? AB? AB implies that A? B. We prove, in this article, that a regular ring R in which 2 is invertible is separative if and only if each a ∈ R satisfying R(1 ? a 2)R = Rr(a) = ?(a)R and i(End R (aR)) = ∞ is unit-regular if and only if each a ∈ R satisfying R(1 ? a 2)R ∩ RaR = Rr(a) ∩ ?(a)R ∩ RaR and i(End R (aR)) = ∞ is unit-regular. Further equivalent characterizations of such regular rings are also obtained.  相似文献   

10.
A ring R is said to be von Newmann local (VNL) if for any a ∈ R, either a or 1 ?a is (von Neumann) regular. The class of VNL rings lies properly between exchange rings and (von Neumann) regular rings. We characterize abelian VNL rings. We also characterize and classify arbitrary VNL rings without an infinite set of orthogonal idempotents; and also the VNL rings having a primitive idempotent e such that eRe is not a division ring. We prove that a semiperfect ring R is VNL if and only if for any right uni-modular row (a 1, a 2) ∈ R 2, one of the a i 's is regular in R. Formal triangular matrix rings that are VNL are also characterized. As a corollary, it is shown that an upper triangular matrix ring T n (R) is VNL if and only if n = 2 or 3 and R is a division ring.  相似文献   

11.
《代数通讯》2013,41(6):2771-2789
Abstract

A ring R is called strongly stable if whenever aR + bR = R, there exists a w ∈ Q(R) such that a + bw ∈ U(R), where Q(R) = {x ∈ R ∣ ? e ? e 2 ∈ J(R), u ∈ U(R) such that x = eu}. These rings are shown to be a natural generalization of semilocal rings and unit regular rings. We investigate the extensions of strongly stable rings. K 1-groups of such rings are also studied. In this way we recover and extend some results of Menal and Moncasi.  相似文献   

12.
Lingling Fan 《代数通讯》2013,41(3):799-806
Let R be an associative ring with identity. An element a ∈ R is called strongly clean if a = e + u with e 2 = e ∈ R, u a unit of R, and eu = ue. A ring R is called strongly clean if every element of R is strongly clean. Strongly clean rings were introduced by Nicholson [7 Nicholson , W. K. ( 1999 ). Strongly clean rings and Fitting's lemma . Comm. Algebra 27 : 35833592 .[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]]. It is unknown yet when a matrix ring over a strongly clean ring is strongly clean. Several articles discussed this topic when R is local or strongly π-regular. In this note, necessary conditions for the matrix ring 𝕄 n (R) (n > 1) over an arbitrary ring R to be strongly clean are given, and the strongly clean property of 𝕄2(RC 2) over the group ring RC 2 with R local is obtained.  相似文献   

13.
Huanyin Chen 《代数通讯》2013,41(10):3790-3804
An element of a ring is called strongly J-clean provided that it can be written as the sum of an idempotent and an element in its Jacobson radical that commute. A ring is strongly J-clean in case each of its elements is strongly J-clean. We investigate, in this article, strongly J-clean rings and ultimately deduce strong J-cleanness of T n (R) for a large class of local rings R. Further, we prove that the ring of all 2 × 2 matrices over commutative local rings is not strongly J-clean. For local rings, we get criteria on strong J-cleanness of 2 × 2 matrices in terms of similarity of matrices. The strong J-cleanness of a 2 × 2 matrix over commutative local rings is completely characterized by means of a quadratic equation.  相似文献   

14.
David E. Dobbs 《代数通讯》2013,41(10):3553-3572
Many results on going-down domains and divided domains are generalized to the context of rings with von Neumann regular total quotient rings. A (commutative unital) ring R is called regular divided if each P ∈ Spec(R)?(Max(R) ∩ Min(R)) is comparable with each principal regular ideal of R. Among rings having von Neumann regular total quotient rings, the regular divided rings are the pullbacks K× K/P D where K is von Neumann regular, P ∈ Spec(K) and D is a divided domain. Any regular divided ring (for instance, regular comparable ring) with a von Neumann regular total quotient ring is a weak Baer going-down ring. If R is a weak Baer going-down ring and T is an extension ring with a von Neumann regular total quotient ring such that no regular element of R becomes a zero-divisor in T, then R ? T satisfies going-down. If R is a weak Baer ring and P ∈ Spec(R), then R + PR (P) is a going-down ring if and only if R/P and R P are going-down rings. The weak Baer going-down rings R such that Spec(R)?Min(R) has a unique maximal element are characterized in terms of the existence of suitable regular divided overrings.  相似文献   

15.
Haiyan Zhu 《代数通讯》2013,41(9):2820-2837
A ring R is called “left generalized morphic” if for every element a in R, there exists b ∈ R such that l(a)? R/Rb, where l(a) denotes the left annihilator of a in R. The aim of this article is to investigate these rings. Several examples are given. They include left morphic rings and left p.p. rings. As applications, some homological dimensions over these rings are defined and studied.  相似文献   

16.
Let R be a commutative ring with identity. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R is weakly prime (resp., almost prime) if a, b ∈ R with ab ∈ I ? {0} (resp., ab ∈ I ? I 2) implies a ∈ I or b ∈ I. Let φ:?(R) → ?(R) ∪ {?} be a function where ?(R) is the set of ideals of R. We call a proper ideal I of R a φ-prime ideal if a, b ∈ R with ab ∈ I ? φ(I) implies a ∈ I or b ∈ I. So taking φ?(J) = ? (resp., φ0(J) = 0, φ2(J) = J 2), a φ?-prime ideal (resp., φ0-prime ideal, φ2-prime ideal) is a prime ideal (resp., weakly prime ideal, almost prime ideal). We show that φ-prime ideals enjoy analogs of many of the properties of prime ideals.  相似文献   

17.
Lingling Fan 《代数通讯》2013,41(6):2021-2029
Let R be an associative ring with identity. An element a ∈ R is called clean if a = e + u with e an idempotent and u a unit of R, and a is called strongly clean if, in addition, eu = ue. A ring R is clean if every element of R is clean, and R is strongly clean if every element of R is strongly clean. When is a matrix ring over a strongly clean ring strongly clean? Does a strongly clean ring have stable range one? For these open questions, we prove that 𝕄 n (C(X)) is strongly π-regular (hence, strongly clean) where C(X) is the ring of all real valued continuous functions on X with X a P-space; C(X) is clean iff it has stable range one; and a unital C*-algebra in which every unit element is self-adjoint is clean iff it has stable range one. The criteria for the ring of complex valued continuous functions C(X,?) to be strongly clean is given.  相似文献   

18.
Tsiu-Kwen Lee 《代数通讯》2013,41(7):2923-2927
Let R be a semiprime ring with Q ml (R) the maximal left ring of quotients of R. Suppose that T: R → Q ml (R) is an additive map satisfying T(x 2) = xT(x) for all x ∈ R. Then T is a right centralizer; that is, there exists a ∈ Q ml (R) such that T(x) = xa for all x ∈ R.  相似文献   

19.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

20.
Juncheol Han 《代数通讯》2013,41(2):872-879
Let R be a ring with identity, X(R) the set of all nonzero non-units of R and G(R) the group of all units of R. By considering left and right regular actions of G(R) on X(R), the following are investigated: (1) For a local ring R such that X(R) is a union of n distinct orbits under the left (or right) regular action of G(R) on X(R), if J n  ≠ 0 = J n+1 where J is the Jacobson radical of R, then the set of all the distinct ideals of R is exactly {R, J, J 2,…, J n , 0}, and each orbit under the left regular action is equal to the one under the right regular action. (2) Such a ring R is left (and right) duo ring. (3) For the full matrix ring S of n × n matrices over a commutative ring R, the number of orbits under left regular action of G(S) on X(S) is equal to the number of orbits under right regular action of G(S) on X(S); the result also holds for the ring of n × n upper triangular matrices over R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号