首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

2.
S. G. Quek  P. C. Wong 《代数通讯》2013,41(12):4693-4701
An element g in a group G is called a left Engel element of G, if for each x ∈ G, there is a positive integer n = n(g, x) such that [x, n g] = 1. In this article, we will study a generalization of the left Engel elements and its connections with the generalized Hirsch–Plotkin and Baer radical.  相似文献   

3.
《代数通讯》2013,41(5):2053-2065
Abstract

We consider the group G of C-automorphisms of C(x, y) (resp. C[x, y]) generated by s, t such that t(x) = y, t(y) = x and s(x) = x, s(y) = ? y + u(x) where u ∈ C[x] is of degree k ≥ 2. Using Galois's theory, we show that the invariant field and the invariant algebra of G are equal to C.  相似文献   

4.
We associate a graph 𝒩 G with a group G (called the non-nilpotent graph of G) as follows: take G as the vertex set and two vertices are adjacent if they generate a non-nilpotent subgroup. In this article, we study the graph theoretical properties of 𝒩 G and its induced subgraph on G \ nil(G), where nil(G) = {x ∈ G | ? x, y ? is nilpotent for all y ∈ G}. For any finite group G, we prove that 𝒩 G has either |Z*(G)| or |Z*(G)| +1 connected components, where Z*(G) is the hypercenter of G. We give a new characterization for finite nilpotent groups in terms of the non-nilpotent graph. In fact, we prove that a finite group G is nilpotent if and only if the set of vertex degrees of 𝒩 G has at most two elements.  相似文献   

5.
O. Macedońska 《代数通讯》2013,41(12):4661-4667
Let F = ?x, y? be a free group. It is known that the commutator [x, y ?1] cannot be expressed in terms of basic commutators, in particular in terms of Engel commutators. We show that the laws imposing such an expression define specific varietal properties. For a property 𝒫 we consider a subset U(𝒫) ? F such that every law of the form [x, y ?1] ≡ u, u ∈ U(𝒫) provides the varietal property 𝒫. For example, we show that each subnormal subgroup is normal in every group of a variety 𝔙 if and only if 𝔙 satisfies a law of the form [x, y ?1] ≡ u, where u ∈ [F′, ?x?].  相似文献   

6.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

7.
For a triangular algebra 𝒜 and an automorphism σ of 𝒜, we describe linear maps F,G:𝒜𝒜 satisfying F(x)y+σ(x)G(y) = 0 whenever x,y𝒜 are such that xy = 0. In particular, when 𝒜 is a zero product determined triangular algebra, maps F and G satisfying the above condition are generalized skew derivations of the form F(x) = F(1)x+D(x) and G(x) = σ(x)G(1)+D(x) for all x𝒜, where D:𝒜𝒜 is a skew derivation. When 𝒜 is not zero product determined, we show that there are also nonstandard solutions for maps F and G.  相似文献   

8.
For a given group G and a homomorphism ?: G → G × G, we construct groups ??(G), 𝒯?(G), and 𝒱?(G) that blend Thompson's groups F, T, and V with G, respectively. Furthermore, we describe the lattice of normal subgroups of the groups ?Δ(G), where Δ: G → G × G is the diagonal homomorphism, Δ(g) = (g, g).  相似文献   

9.
Let ? be a prime ring of characteristic different from 2, 𝒬r the right Martindale quotient ring of ?, 𝒞 the extended centroid of ?, F, G two generalized skew derivations of ?, and k ≥ 1 be a fixed integer. If [F(r), r]kr ? r[G(r), r]k = 0 for all r ∈ ?, then there exist a ∈ 𝒬r and λ ∈ 𝒞 such that F(x) = xa and G(x) = (a + λ)x, for all x ∈ ?.  相似文献   

10.
A weak Cayley table isomorphism is a bijection φ:GH of groups such that φ(xy)~φ(x)φ(y) for all x,yG. Here ~ denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ:GG forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I:GG,x?x?1. Let 𝒲0(G) = ?Aut(G),I?≤𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that PSL(2,pn) has trivial weak Cayley table group, where p≥5 is a prime and n≥1.  相似文献   

11.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

12.
Hongdi Huang 《代数通讯》2013,41(2):568-590
A group G is said to be a B(n, k) group if for any n-element subset A of G, |A2| ≤k. In this paper, a characterization of B(5, 18) groups is given. It is shown that G is a B(5, 18) group if and only if one of the following statements holds: (1) G is abelian; (2) |G| ≤18; (3) G ? ? a, b | a5 = b4 = 1, ab = a?1 ?.  相似文献   

13.
For any field 𝕂 and integer n ≥ 2, we consider the Leavitt algebra L 𝕂(n); for any integer d ≥ 1, we form the matrix ring S = M d (L 𝕂(n)). S is an associative algebra, but we view S as a Lie algebra using the bracket [a, b] = ab ? ba for a, b ∈ S. We denote this Lie algebra as S ?, and consider its Lie subalgebra [S ?, S ?]. In our main result, we show that [S ?, S ?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1 and char(𝕂) does not divide d. In particular, when d = 1, we get that [L 𝕂(n)?, L 𝕂(n)?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1.  相似文献   

14.
Let X be a nonempty set of positive integers and X* = X?{1}. The divisibility graph D(X) has X* as the vertex set, and there is an edge connecting a and b with a, b ∈ X* whenever a divides b or b divides a. Let X = cs(G) be the set of conjugacy class sizes of a group G. In this case, we denote D(cs(G)) by D(G). In this paper, we will find the number of connected components of D(G) where G is the symmetric group S n or is the alternating group A n .  相似文献   

15.
Let G be a group and Aut(G) be the group of automorphisms of G. Then the Acentralizer of an automorphism α ∈Aut(G) in G is defined as C G (α) = {g ∈ G∣α(g) = g}. For a finite group G, let Acent(G) = {C G (α)∣α ∈Aut(G)}. Then for any natural number n, we say that G is n-Acentralizer group if |Acent(G)| =n. We show that for any natural number n, there exists a finite n-Acentralizer group and determine the structure of finite n-Acentralizer groups for n ≤ 5.  相似文献   

16.
Raimundo Bastos 《代数通讯》2013,41(10):4177-4184
Let m, n be positive integers. Suppose that G is a residually finite group in which for every element x ∈ G there exists a positive integer q = q(x) ≤ m such that xq is left n-Engel. We show that G is locally virtually nilpotent. Further, let w be a multilinear commutator and G a residually finite group in which for every product of at most 896 w-values x there exists a positive integer q = q(x) dividing m such that xq is left n-Engel. Then w(G) is locally virtually nilpotent.  相似文献   

17.
This paper studies the behavior under iteration of the maps T ab (x,y) = (F ab (x) ? y, x) of the plane ?2, in which F ab (x) = ax if x ≥ 0 and bx if x < 0. These maps are area-preserving homeomorphisms of ?2 that map rays from the origin to rays from the origin. Orbits of the map correspond to solutions of the nonlinear difference equation x n+2 = 1/2(a ? b)|x n+1|+1/2(a+b)x n+1 ? x n . This difference equation can be rewritten in an eigenvalue form for a nonlinear difference operator of Schrödinger type ? x n+2+2x n+1 ? x n +V μ(x n+1)x n+1 = Ex n+1, in which μ = (1/2)(a ? b) is fixed, and V μ(x) = μ(sgn(x)) is an antisymmetric step function potential, and the energy E = 2 ? 1/2(a+b). We study the set Ω SB of parameter values where the map T ab has at least one bounded orbit, which correspond to l -eigenfunctions of this difference operator. The paper shows that for transcendental μ the set Spec[μ] of energy values E having a bounded solution is a Cantor set. Numerical simulations suggest the possibility that these Cantor sets have positive (one-dimensional) measure for all real values of μ.  相似文献   

18.
J. M. Casas  N. Corral 《代数通讯》2013,41(6):2104-2120
We construct the endofunctor 𝔲𝔠𝔢 between the category of Leibniz algebras which assigns to a perfect Leibniz algebra its universal central extension, and we obtain the isomorphism 𝔲𝔠𝔢Lie(𝔮Lie) ? (𝔲𝔠𝔢Leib(𝔮))Lie, where 𝔮 is a perfect Leibniz algebra satisfying the condition [x, [x, y]] + [[x, y], x] = 0, for all x, y ∈ 𝔮. Moreover, we obtain several results concerning the lifting of automorphisms and derivations in a covering. We also study the relationship between the universal central extension of a semidirect product of perfect Leibniz algebras and the semidirect product of the universal central extension of both of them.  相似文献   

19.
For any integer n ≠ 0,1, a group G is said to be “n-Bell” if it satisfies the identity [x n ,y] = [x,y n ]. It is known that if G is an n-Bell group, then the factor group G/Z 2(G) has finite exponent dividing 12n 5(n ? 1)5. In this article we show that this bound can be improved. Moreover, we prove that every n-Bell group is n-nilpotent; consequently, using results of Baer on finite n-nilpotent groups, we give the structure of locally finite n-Bell groups. Finally, we are concerned with locally graded n-Bell groups for special values of n.  相似文献   

20.
Let X be a Banach space, (I, μ) be a finite measure space. By L Φ(I, X), let us denote the space of all X-valued Bochner Orlicz integrable functions on the unit interval I equipped with the Luxemburg norm. A closed bounded subset G of X is called remotal if for any x ∈ X, there exists g ∈ G such that ‖x ? g‖ = ρ(x, G) = sup {‖x ? y‖: y ∈ G}. In this article, we show that for a separable remotal set G ? X, the set of Bochner integrable functions, L Φ(I, G) is remotal in L Φ(I, X). Some other results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号