首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《代数通讯》2013,41(9):4445-4453
  相似文献   

2.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

3.
Mark Grinshpon 《代数通讯》2013,41(7):2619-2624
Given rings R ? S, consider the division closure 𝒟(R, S) and the rational closure ?(R, S) of R in S. If S is commutative, then 𝒟(R, S) = ?(R, S) = RT ?1, where T = {t ∈ R | t ?1 ∈ S}. We show that this is also true if we assume only that R is commutative.  相似文献   

4.
Let R be a prime ring, with no nonzero nil right ideal, Q the two-sided Martindale quotient ring of R, F a generalized derivation of R, L a noncommutative Lie ideal of R, and b ∈ Q. If, for any u, w ∈ L, there exists n = n(u, w) ≥1 such that (F(uw) ? bwu)n = 0, then one of the following statements holds:
  1. F = 0 and b = 0;

  2. R ? M2(K), the ring of 2 × 2 matrices over a field K, b2 = 0, and F(x) = ?bx, for all x ∈ R.

  相似文献   

5.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

6.
7.
V. V. Bavula 《代数通讯》2013,41(8):3219-3261
The left quotient ring (i.e., the left classical ring of fractions) Qcl(R) of a ring R does not always exist and still, in general, there is no good understanding of the reason why this happens. In this article, existence of the largest left quotient ring Ql(R) of an arbitrary ring R is proved, i.e., Ql(R) = S0(R)?1R where S0(R) is the largest left regular denominator set of R. It is proved that Ql(Ql(R)) = Ql(R); the ring Ql(R) is semisimple iff Qcl(R) exists and is semisimple; moreover, if the ring Ql(R) is left Artinian, then Qcl(R) exists and Ql(R) = Qcl(R). The group of units Ql(R)* of Ql(R) is equal to the set {s?1t | s, t ∈ S0(R)} and S0(R) = RQl(R)*. If there exists a finitely generated flat left R-module which is not projective, then Ql(R) is not a semisimple ring. We extend slightly Ore's method of localization to localizable left Ore sets, give a criterion of when a left Ore set is localizable, and prove that all left and right Ore sets of an arbitrary ring are localizable (not just denominator sets as in Ore's method of localization). Applications are given for certain classes of rings (semiprime Goldie rings, Noetherian commutative rings, the algebra of polynomial integro-differential operators).  相似文献   

8.
Let R be a commutative ring with identity. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R is weakly prime (resp., almost prime) if a, b ∈ R with ab ∈ I ? {0} (resp., ab ∈ I ? I 2) implies a ∈ I or b ∈ I. Let φ:?(R) → ?(R) ∪ {?} be a function where ?(R) is the set of ideals of R. We call a proper ideal I of R a φ-prime ideal if a, b ∈ R with ab ∈ I ? φ(I) implies a ∈ I or b ∈ I. So taking φ?(J) = ? (resp., φ0(J) = 0, φ2(J) = J 2), a φ?-prime ideal (resp., φ0-prime ideal, φ2-prime ideal) is a prime ideal (resp., weakly prime ideal, almost prime ideal). We show that φ-prime ideals enjoy analogs of many of the properties of prime ideals.  相似文献   

9.
《代数通讯》2013,41(5):2219-2227
  相似文献   

10.
Let G = (V, E) be a graph. A set S ? V is a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number γ(G) of G is the minimum cardinality among the dominating sets of G. The main object of this article is to study and characterize the dominating sets of the zero-divisor graph Γ(R) and ideal-based zero-divisor graph Γ I (R) of a commutative ring R.  相似文献   

11.
12.
《代数通讯》2013,41(5):2053-2065
Abstract

We consider the group G of C-automorphisms of C(x, y) (resp. C[x, y]) generated by s, t such that t(x) = y, t(y) = x and s(x) = x, s(y) = ? y + u(x) where u ∈ C[x] is of degree k ≥ 2. Using Galois's theory, we show that the invariant field and the invariant algebra of G are equal to C.  相似文献   

13.
14.
Let R be any commutative ring with identity, and let C be a (finite or infinite) cyclic group. We show that the group ring R(C) is presimplifiable if and only if its augmentation ideal I(C) is presimplifiable. We conjecture that the group rings R(C n ) are presimplifiable if and only if n = p m , p ∈ J(R), p is prime, and R is presimplifiable. We show the necessity of n = p m , and we prove the sufficiency when n = 2, 3, 4. These results were made possible by a new formula derived herein for the circulant determinantal coefficients.  相似文献   

15.
An associative algebra R over a field K is said to be right ?-prime if for every nonzero r ? R, there exists a finitely generated subalgebra S of R such that rSt = 0 implies t = 0. Clearly, strongly prime implies ?-prime and ?-prime implies prime. A large number of examples of group algebras are given which show that the concept of ?-prime lies strictly between prime and strongly prime. A complete characterization of ?-prime group algebras is given. It is proved that a group algebra KG of the group G over the field K is ?-prime if and only if Λ+(G) = (1). Intersection theorems play an important role in the study. In the process, a new intersection theorem for ?-prime group algebras is obtained. Elementwise characterization of the ?-prime radical is given and its relation with some well-known radicals is discussed.  相似文献   

16.
The isomorphism structure of the maximal divisible subgroup of the subgroup V p (R(G); H) Id R(G) of the normalized unit group V R(G) in a commutative group ring R(G) is completely described only in terms of R, G and H whenever R is a commutative unital ring of prime characteristic p and G is a p-mixed abelian group. In particular, the maximal divisible subgroup of V R(G) is characterized. This extends a result due to Nachev (Commun. Algebra, 1995) as well as a result due to the author (Commun. Algebra, 2010).  相似文献   

17.
M. Asaad 《代数通讯》2013,41(11):4217-4224
Let G be a finite group. A subgroup K of a group G is called an ?-subgroup of G if N G (K) ∩ K x  ≦ K for all x ? G. The set of all ?-subgroups of G will be denoted by ?(G). Let P be a nontrivial p-group. A chain of subgroups 1 = P 0 ? P 1 ? ··· ? P n  = P is called a maximal chain of P provided that |P i : P i?1| = p, i = 1, 2, ···, n. A nontrivial p-subgroup P of G is called weakly supersolvably embedded in G if P has a maximal chain 1 = P 0 ? P 1 ? ··· ? P i  ? ··· ? P n  = P such that P i  ? ?(G) for i = 1, 2, ···, n. Using the concept of weakly supersolvably embedded, we obtain new characterizations of p-nilpotent and supersolvable finite groups.  相似文献   

18.
We consider an R G-module A over a commutative Noetherian ring R. Let G be a group having infinite section p-rank (or infinite 0-rank) such that C G (A) = 1, A/C A (G) is not a Noetherian R-module, but the quotient A/C A (H) is a Noetherian R-module for every proper subgroup H of infinite section p-rank (or infinite 0-rank, respectively). In this paper, it is proved that if G is a locally soluble group, then G is soluble. Some properties of soluble groups of this type are also obtained.  相似文献   

19.
Zhengxin Chen  Bing Wang 《代数通讯》2013,41(5):2044-2061
Let L be a finite-dimensional complex simple Lie algebra, L ? be the ?-span of a Chevalley basis of L, and L R  = R ?? L ? be a Chevalley algebra of type L over a commutative ring R. Let 𝒩(R) be the nilpotent subalgebra of L R spanned by the root vectors associated with positive roots. A map ? of 𝒩(R) is called commuting if [?(x), x] = 0 for all x ∈ 𝒩(R). In this article, we prove that under some conditions for R, if Φ is not of type A 2, then a derivation (resp., an automorphism) of 𝒩(R) is commuting if and only if it is a central derivation (resp., automorphism), and if Φ is of type A 2, then a derivation (resp., an automorphism) of 𝒩(R) is commuting if and only if it is a sum (resp., a product) of a graded diagonal derivation (resp., automorphism) and a central derivation (resp., automorphism).  相似文献   

20.
Let R be a commutative ring with nonzero identity and Z(R) its set of zero-divisors. The zero-divisor graph of R is Γ(R), with vertices Z(R)?{0} and distinct vertices x and y are adjacent if and only if xy = 0. For a proper ideal I of R, the ideal-based zero-divisor graph of R is Γ I (R), with vertices {x ∈ R?I | xy ∈ I for some y ∈ R?I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we study the relationship between the two graphs Γ(R) and Γ I (R). We also determine when Γ I (R) is either a complete graph or a complete bipartite graph and investigate when Γ I (R) ? Γ(S) for some commutative ring S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号