首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this paper, we investigate the finite groups all of whose non-normal nilpotent subgroups are cyclic. We show that such groups are solvable with cyclic centers. If G is a non-supersolvable group, then G has only one non-cyclic Sylow subgroup which is either isomorphic to Q8 or is of type (q, q).  相似文献   

2.
J. Cimprič 《代数通讯》2013,41(1):103-119
A subgroup H is called Q-supplemented in a finite group G, if there exists a subgroup K of G such that G = HK and H ∩ K is contained in H QG , where H QG is the maximal quasinormal subgroup of G contained in H. In this article, we investigate the influence of Q-supplementation of some primary subgroups in finite groups. Some recent results are generalized.  相似文献   

3.
Jiakuan Lu  Wei Meng 《代数通讯》2013,41(5):1752-1756
For a finite group G, let v(G) denote the number of conjugacy classes of non-normal subgroups of G and vc(G) denote the number of conjugacy classes of non-normal noncyclic subgroups of G. In this paper, we show that every finite group G satisfying v(G) ≤2|π(G)| or vc(G) ≤ |π(G)| is solvable, and for a finite nonsolvable group G, v(G) = 2|π(G)| +1 if and only if G ? A 5.  相似文献   

4.
We prove that a transitive permutation group of degree n with a cyclic point stabilizer and whose order is n(n-1) is isomorphic to the affine group of degree 1 over a field with n elements. More generally we show that if a finite group G has an abelian and core-free Hall subgroup Q, then either Q has a small order (2|Q|2 < |G|) or G is a direct product of 2-transitive Frobenius groups.  相似文献   

5.
Zahra Rezazadeh 《代数通讯》2017,45(11):4605-4609
For a finite group G, let νc(G) denote the number of conjugacy classes of non-normal non-cyclic subgroups of G. We show that for every finite non-solvable group G, νc(G) = |π(G)|+1 if and only if G?A5, the alternating group on 5 letters, or SL(2,5).  相似文献   

6.
Following Rose, a subgroup H of a group G is called contranormal, if G = H G . In certain sense, contranormal subgroups are antipodes to subnormal subgroups. It is well known that a finite group is nilpotent if and only if it has no proper contranormal subgroups. However, for the infinite groups this criterion is not valid. There are examples of non-nilpotent infinite groups whose subgroups are subnormal; in paricular, these groups have no contranormal subgroups. Nevertheless, for some classes of infinite groups, the absence of contranormal subgroups implies the nilpotency of the group. The current article is devoted to the search of such classes. Some new criteria of nilpotency in certain classes of infinite groups have been established.  相似文献   

7.
Jiakuan Lu  Wei Meng 《代数通讯》2017,45(5):2043-2046
For a finite group G, let n(G) denote the number of conjugacy classes of non-subnormal subgroups of G. In this paper, we show that a finite group G satisfying n(G)≤2|π(G)| is solvable, and for a finite non-solvable group G, n(G) = 2|π(G)|+1 if and only if G?A5.  相似文献   

8.
We say a lattice L is a subgroup lattice if there exists a group G such that Sub(G)?L, where Sub(G) is the lattice of subgroups of G, ordered by inclusion. We prove that the lattice of closure operators which act on the subgroup lattice of a finite group G is itself a subgroup lattice if and only if G is cyclic of prime power order.  相似文献   

9.
Xiaoyu Chen 《代数通讯》2013,41(2):731-745
A subgroup H of a finite group G is said to satisfy Π-property in G if for every chief factor L/K of G, |G/K: NG/K(HK/KL/K)| is a π(HK/KL/K)-number. A subgroup H of G is called Π-supplemented in G if there exists a subgroup T of G such that G = HT and HT ≤ I ≤ H, where I satisfies Π-property in G. In this article, we investigate the structure of a finite group G under the assumption that some primary subgroups of G are Π-supplemented in G. The main result we proved improves a large number of earlier results.  相似文献   

10.
Long Miao 《代数通讯》2013,41(2):594-603
A subgroup H is called ?-supplemented in a finite group G, if there exists a subgroup B of G such that G = HB and H 1 B is a proper subgroup of G for any maximal subgroup H 1 of H. In this article, we investigate the influence of ?-supplementation of some primary subgroups in finite groups. Some new results about supersolvable groups and formation are obtained.  相似文献   

11.
Julian Brough 《代数通讯》2013,41(12):5347-5361
Let p be a prime. We prove that if a finite group G has non-abelian Sylow p-subgroups, and the class size of every p-element in G is coprime to p, then G contains a simple group as a subquotient which exhibits the same property. In addition, we provide a list of all the simple groups and primes such that the Sylow p-subgroups are non-abelian and all p-elements have class size coprime to p.  相似文献   

12.
Given a Fitting class ℱ associated to a homomorph we examine the existence of the ℱ-injectors for a finite groupG, provided thatG verifies certain ℱ-constraint conditions.  相似文献   

13.
Let G be a connected noncompact semisimple Lie group with finite center, K a maximal compact subgroup, and X a compact manifold (or more generally, a Borel space) on which G acts. Assume that ν is a μ -stationary measure on X, where μ is an admissible measure on G, and that the G-action is essentially free. We consider the foliation of K\ X with Riemmanian leaves isometric to the symmetric space K\ G, and the associated tangential bounded de-Rham cohomology, which we show is an invariant of the action. We prove both vanishing and nonvanishing results for bounded tangential cohomology, whose range is dictated by the size of the maximal projective factor G/Q of (X, ν). We give examples showing that the results are often best possible. For the proofs we formulate a bounded tangential version of Stokes’ theorem, and establish a bounded tangential version of Poincaré’s Lemma. These results are made possible by the structure theory of semisimple Lie groups actions with stationary measure developed in Nevo and Zimmer [Ann of Math. 156, 565--594]. The structure theory assert, in particular, that the G-action is orbit equivalent to an action of a uniquely determined parabolic subgroup Q. The existence of Q allows us to establish Stokes’ and Poincaré’s Lemmas, and we show that it is the size of Q (determined by the entropy) which controls the bounded tangential cohomology. Supported by BSF and ISF. Supported by BSF and NSF.  相似文献   

14.
H. Amiri 《代数通讯》2013,41(2):770-778
For a finite group G, let ψ(G) denote the sum of element orders of G. The aim of this article is to show that ψ(H) < ψ(A n ) for every proper subgroup H of the symmetric group of degree n, which is different from the alternating group A n .  相似文献   

15.
A finite groupG is calledQ-admissible if there exists a finite dimensional central division algebra overQ, containing a maximal subfield which is a Galois extension ofQ with Galois group isomorphic toG. It is proved thatS 5 , one of the two nontrivial central extensions ofS 5 byZ/2Z, isQ-admissible. As a consequence of that result and previous results of Sonn and Stern, every finite Sylow-metacyclic group, havingA 5 as a composition factor, isQ-admissible. This paper is part of a M.Sc. thesis written at the Technion — Israel Institute of Technology, under the supervision of Professor J. Sonn, whom the author wishes to thank for his valuable guidance.  相似文献   

16.
We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K of G such that G = HK and HK ⩽ core(H). In this paper it is proved that a finite group G is p-nilpotent if G is S 4-free and every minimal subgroup of PG N is c-supplemented in N G (P), and when p = 2 P is quaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G. As some applications of this result, some known results are generalized.  相似文献   

17.
Khalid Bou-Rabee  Chen Shi 《代数通讯》2017,45(10):4370-4379
The commensurability index between two subgroups A,B of a group G is [A:AB][B:AB]. This gives a notion of distance among finite index subgroups of G, which is encoded in the p-local commensurability graphs of G. We show that for any metabelian group, any component of the p-local commensurabilty graph of G has diameter bounded above by 4. However, no universal upper bound on diameters of components exists for the class of finite solvable groups. In the appendix we give a complete classification of components for upper triangular matrix groups in GL(2,𝔽q).  相似文献   

18.
If G is a finite group with subgroup H, then the Chermak–Delgado measure of H (in G) is defined as |H||C G (H)|. The Chermak–Delgado lattice of G, denoted 𝒞𝒟(G), is the set of all subgroups with maximal Chermak–Delgado measure; this set is a moduar sublattice within the subgroup lattice of G. In this paper we provide an example of a p-group P, for any prime p, where 𝒞𝒟(P) is lattice isomorphic to 2 copies of ?2 (a quasiantichain of width 2) that are adjoined maximum-to-minimum. We introduce terminology to describe this structure, called a 2-string of 2-diamonds, and we also give two constructions for generalizing the example. The first generalization results in a p-group with Chermak–Delgado lattice that, for any positive integers n and l, is a 2l-string of n-dimensional cubes adjoined maximum-to-minimum and the second generalization gives a construction for a p-group with Chermak–Delgado lattice that is a 2l-string of ? p+1 (quasiantichains, each of width p + 1) adjoined maximum-to-minimum.  相似文献   

19.
Let З be a complete set of Sylow subgroups of a finite group G, that is, З contains exactly one and only one Sylow p-subgroup of G for each prime p. A subgroup of a finite group G is said to be З-permutable if it permutes with every member of З. Recently, using the Classification of Finite Simple Groups, Heliel, Li and Li proved tile following result: If the cyclic subgroups of prime order or order 4 iif p = 2) of every member of З are З-permutable subgroups in G, then G is supersolvable. In this paper, we give an elementary proof of this theorem and generalize it in terms of formation.  相似文献   

20.
An involution v of a group G is said to be finite (in G) if vv g has finite order for any gG. A subgroup B of G is called a strongly embedded (in G) subgroup if B and G\B contain involutions, but BB g does not, for any gG\B. We prove the following results. Let a group G contain a finite involution and an involution whose centralizer in G is periodic. If every finite subgroup of G of even order is contained in a simple subgroup isomorphic, for some m, to L 2(2 m ) or Sz(2 m ), then G is isomorphic to L 2(Q) or Sz(Q) for some locally finite field Q of characteristic two. In particular, G is locally finite (Thm. 1). Let a group G contain a finite involution and a strongly embedded subgroup. If the centralizer of some involution in G is a 2-group, and every finite subgroup of even order in G is contained in a finite non-Abelian simple subgroup of G, then G is isomorphic to L 2(Q) or Sz(Q) for some locally finite field Q of characteristic two (Thm. 2). Supported by RFBR (project No. 08-01-00322), by the Council for Grants (under RF President) and State Aid of Leading Scientific Schools (grant NSh-334.2008.1), and by the Russian Ministry of Education through the Analytical Departmental Target Program (ADTP) “Development of Scientific Potential of the Higher School of Learning” (project Nos. 2.1.1.419 and 2.1.1./3023). (D. V. Lytkina and V. D. Mazurov) Translated from Algebra i Logika, Vol. 48, No. 2, pp. 190–202, March–April, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号