首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Consider an irreducible polynomial of the form f(X) = X p  ? aX ? b ∈ 𝔽[X] and α a root of f(X), where 𝔽 is a field of characteristic p. In 1975, F.J. Sullivan stated a lemma that provides the trace, taken with respect to the extension 𝔽(α)/𝔽, of elements of the form α n , where 0 ≤ n ≤ p 2 ? 1. We present a generalization of Sullivan's Lemma and provide another proof of the original lemma. We explain how computing Tr(α n ) for n < p r can be reduced to computing the traces Tr(α m ) for all m ≤ r(p ? 1).  相似文献   

2.
3.
We denote by 𝒜(R) the class of all Artinian R-modules and by 𝒩(R) the class of all Noetherian R-modules. It is shown that 𝒜(R) ? 𝒩(R) (𝒩(R) ? 𝒜(R)) if and only if 𝒜(R/P) ? 𝒩(R/P) (𝒩(R/P) ? 𝒜(R/P)), for all centrally prime ideals P (i.e., ab ∈ P, a or b in the center of R, then a ∈ P or b ∈ P). Equivalently, if and only if 𝒜(R/P) ? 𝒩(R/P) (𝒩(R/P) ? 𝒜(R/P)) for all normal prime ideals P of R (i.e., ab ∈ P, a, b normalize R, then a ∈ P or b ∈ P). We observe that finitely embedded modules and Artinian modules coincide over Noetherian duo rings. Consequently, 𝒜(R) ? 𝒩(R) implies that 𝒩(R) = 𝒜(R), where R is a duo ring. For a ring R, we prove that 𝒩(R) = 𝒜(R) if and only if the coincidence in the title occurs. Finally, if Q is the quotient field of a discrete valuation domain R, it is shown that Q is the only R-module which is both α-atomic and β-critical for some ordinals α,β ≥ 1 and in fact α = β = 1.  相似文献   

4.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

5.
Young Jo Kwak 《代数通讯》2013,41(5):2099-2106
Let (V, Q) be a quadratic vector space over a fixed field. Orthogonal group 𝒪(V, Q) is defined as automorphisms on (V, Q). If Q = I, it is 𝒪(V, I) = 𝒪(n). There is a nice result that 𝒪(n) ? Aut(𝔬(n)) over ? or ?, where 𝔬(n) is the Lie algebra of n × n alternating matrices over the field. How about another field The answer is “Yes” if it is GF(2). We show it explicitly with the combinatorial basis ?. This is a verification of Steinberg's main result in 1961, that is, Aut(𝔬(n)) is simple over the square field, with a nonsimple exception Aut(𝔬(5)) ? 𝒪(5) ? 𝔖6.  相似文献   

6.
In this article we prove that a set of points B of PG(n, 2) is a minimal blocking set if and only if ?B? = PG(d, 2) with d odd and B is a set of d + 2 points of PG(d, 2) no d + 1 of them in the same hyperplane. As a corollary to the latter result we show that if G is a finite 2-group and n is a positive integer, then G admits a ? n+1-cover if and only if n is even and G? (C 2) n , where by a ? m -cover for a group H we mean a set 𝒞 of size m of maximal subgroups of H whose set-theoretic union is the whole H and no proper subset of 𝒞 has the latter property and the intersection of the maximal subgroups is core-free. Also for all n < 10 we find all pairs (m,p) (m > 0 an integer and p a prime number) for which there is a blocking set B of size n in PG(m,p) such that ?B? = PG(m,p).  相似文献   

7.
N. N. Vorob'ev 《代数通讯》2013,41(3):1087-1093
The following is proved: If 𝔐? is the noncancellable product of the formations 𝔐 and ? and 𝔐? ? 𝔉 for some one-generated saturated finite variety 𝔉, then 𝔐 is soluble.  相似文献   

8.
H. H. Brungs 《代数通讯》2013,41(11):3874-3903
A right cone H in a group G is a submonoid of G that generates G and aH ? bH for a, b ? H implies bH ? aH. With any right ideal I ≠ H of H a completely prime ideal P r (I) of H is associated and the set 𝒫(I) of right ideals I′ of H with the same associated prime ideal P′ =P r (I) is determined if P′·? P″ is a right invariant segment in H. The set 𝒫(I) is also described if P r (I) is a limit prime.  相似文献   

9.
《代数通讯》2013,41(10):4697-4711
Abstract

It is proved that if the product ? of formations 𝔐 and ? ≠ ? is either a Baer-local formation or an ω-local formation and if ? ? 𝔉 for some one-generated ω-local formation 𝔉, then 𝔐 is also an ω-local formation.  相似文献   

10.
Mark Grinshpon 《代数通讯》2013,41(7):2619-2624
Given rings R ? S, consider the division closure 𝒟(R, S) and the rational closure ?(R, S) of R in S. If S is commutative, then 𝒟(R, S) = ?(R, S) = RT ?1, where T = {t ∈ R | t ?1 ∈ S}. We show that this is also true if we assume only that R is commutative.  相似文献   

11.
For any field 𝕂 and integer n ≥ 2, we consider the Leavitt algebra L 𝕂(n); for any integer d ≥ 1, we form the matrix ring S = M d (L 𝕂(n)). S is an associative algebra, but we view S as a Lie algebra using the bracket [a, b] = ab ? ba for a, b ∈ S. We denote this Lie algebra as S ?, and consider its Lie subalgebra [S ?, S ?]. In our main result, we show that [S ?, S ?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1 and char(𝕂) does not divide d. In particular, when d = 1, we get that [L 𝕂(n)?, L 𝕂(n)?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1.  相似文献   

12.
13.
M. Asaad 《代数通讯》2013,41(11):4217-4224
Let G be a finite group. A subgroup K of a group G is called an ?-subgroup of G if N G (K) ∩ K x  ≦ K for all x ? G. The set of all ?-subgroups of G will be denoted by ?(G). Let P be a nontrivial p-group. A chain of subgroups 1 = P 0 ? P 1 ? ··· ? P n  = P is called a maximal chain of P provided that |P i : P i?1| = p, i = 1, 2, ···, n. A nontrivial p-subgroup P of G is called weakly supersolvably embedded in G if P has a maximal chain 1 = P 0 ? P 1 ? ··· ? P i  ? ··· ? P n  = P such that P i  ? ?(G) for i = 1, 2, ···, n. Using the concept of weakly supersolvably embedded, we obtain new characterizations of p-nilpotent and supersolvable finite groups.  相似文献   

14.
Matej Brešar 《代数通讯》2013,41(1):154-163
Let 𝒜 be a ring, let ? be an 𝒜-bimodule, and let 𝒞 be the center of ?. A map F:𝒜 → ? is said to be range-inclusive if [F(x), 𝒜] ? [x, ?] for every x ∈ 𝒜. We show that if 𝒜 contains idempotents satisfying certain technical conditions (which we call wide idempotents), then every range-inclusive additive map F:𝒜 → ? is of the form F(x) = λx + μ(x) for some λ ∈ 𝒞 and μ:𝒜 → 𝒞. As a corollary we show that if 𝒜 is a prime ring containing an idempotent different from 0 and 1, then every range-inclusive additive map from 𝒜 into itself is commuting (i.e., [F(x), x] = 0 for every x ∈ 𝒜).  相似文献   

15.
Hirotaka Koga 《代数通讯》2013,41(7):2417-2429
Let R be a commutative noetherian ring and A a noetherian R-algebra. Let P ? ∈ 𝒦b(𝒫 A ) with Hom𝒦(Mod-A)(P ?, P ?[i]) = 0 for i > 0. We will provide a sufficient condition for P ? to be a direct summand of a silting complex. Also, in case Hom𝒦(Mod-A)(P ?, P ?[i]) = 0 for i ≠ 0, we will provide a sufficient condition for P ? to be a direct summand of a tilting complex.  相似文献   

16.
Let ? be a prime ring, 𝒞 the extended centroid of ?, ? a Lie ideal of ?, F be a nonzero generalized skew derivation of ? with associated automorphism α, and n ≥ 1 be a fixed integer. If (F(xy) ? yx) n  = 0 for all x, y ∈ ?, then ? is commutative and one of the following statements holds:

(1) Either ? is central;

(2) Or ? ? M 2(𝒞), the 2 × 2 matrix ring over 𝒞, with char(𝒞) = 2.  相似文献   

17.
John Dauns 《代数通讯》2013,41(6):2240-2248
For any ring R, the set 𝒩(R) of all natural classes of R-modules is a complete Boolean lattice, which is a direct sum of two convex and complete Boolean sublattices 𝒩(R) = 𝒩 t (R) ⊕ 𝒩 f (R), where the last summand is the set of all nonsingular natural classes. The ring R contains a unique lattice of ideals 𝒥(R) which is lattice isomorphic to 𝒩 f (R). The present note develops the analogue of all of the above for an arbitrary R-module M, so that in the special case when M R  = R R , the known lattice isomorphism 𝒥(R) ? 𝒩 f (R) is recovered.  相似文献   

18.
O. Macedońska 《代数通讯》2013,41(12):4661-4667
Let F = ?x, y? be a free group. It is known that the commutator [x, y ?1] cannot be expressed in terms of basic commutators, in particular in terms of Engel commutators. We show that the laws imposing such an expression define specific varietal properties. For a property 𝒫 we consider a subset U(𝒫) ? F such that every law of the form [x, y ?1] ≡ u, u ∈ U(𝒫) provides the varietal property 𝒫. For example, we show that each subnormal subgroup is normal in every group of a variety 𝔙 if and only if 𝔙 satisfies a law of the form [x, y ?1] ≡ u, where u ∈ [F′, ?x?].  相似文献   

19.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

20.
Let (R, 𝔪) be a commutative, noetherian, local ring, E the injective hull of the residue field R/𝔪, and M ○○ = Hom R (Hom R (M, E), E) the bidual of an R-module M. We investigate the elements of Ass(M ○○) as well as those of Coatt(M) = {𝔭 ∈ Spec(R)|𝔭 = Ann R (Ann M (𝔭))} and provide criteria for equality in one of the two inclusions Ass(M) ? Ass(M ○○) ? Coatt(M). If R is a Nagata ring and M a minimax module, i.e., an extension of a finitely generated R-module by an artinian R-module, we show that Ass(M ○○) = Ass(M) ∪ {𝔭 ∈ Coatt(M)| R/𝔭 is incomplete}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号