首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FBN Modules     
For M ∈ R-Mod and τ ∈M-tors, we define the concept of fully τ-bounded module as a generalization of the concept of fully τ-bounded ring. We prove that for a τ-noetherian module M with local τ M -Gabriel correspondence, which is a progenerator of σ[M] and with τ is FIS-invariant, then M is fully τ-bounded. Also, we show that if M is τ-noetherian and fully τ-bounded, then M has local τ M -Gabriel correspondence.  相似文献   

2.
Let M be a right R-module and N ∈ σ[M]. A submodule K of N is called δ-M-small if, whenever N = K + X with N/X M-singular, we have N = X. N is called a δ-M-small module if N? K, K is δ-M-small in L for some K, L ∈ σ[M]. In this article, we prove that if M is a finitely generated self-projective generator in σ[M], then M is a Noetherian QF-module if and only if every module in σ[M] is a direct sum of a projective module in σ[M] and a δ-M-small module. As a generalization of a Harada module, a module M is called a δ-Harada module if every injective module in σ[M] is δ M -lifting. Some properties of δ-Harada modules are investigated and a characterization of a Harada module is also obtained.  相似文献   

3.
Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). Let F be a fully invariant submodule of M and I?1(F) denotes the set {mM:Im?F} for any subset I of S. The module M is called F-Baer if I?1(F) is a direct summand of M for every left ideal I of S. This work is devoted to the investigation of properties of F-Baer modules. We use F-Baer modules to decompose a module into two parts consists of a Baer module and a module determined by fully invariant submodule F, namely, for a module M, we show that M is F-Baer if and only if M = FN where N is a Baer module. By using F-Baer modules, we obtain some new results for Baer rings.  相似文献   

4.
Chin-Pi Lu 《代数通讯》2013,41(3):807-828
Let M be a module over a commutative ring R. A submodule P of M is called prime if P ≠ M and, whenever r ∈ R, e ∈ M, and re ∈ P, we have rM ? P or e ∈ P. We let Spec(M) denote the set of all prime submodules of M. Using a topology analogous to the Zariski topology for Spec(R), we establish necessary and sufficient conditions for Spec(M) to be a Noetherian space. We produce some examples of modules with Noetherian spectrum that have not appeared in the literature previously. In particular, Laskerian modules and faithfully flat modules over Laskerian rings have Noetherian spectra. (The term Laskerian is defined in Section 3.)  相似文献   

5.
A. Alhevaz  M. Habibi 《代数通讯》2013,41(4):1195-1221
ABSTRACT

In this paper, we study the behavior of the couniform (or dual Goldie) dimension of a module under various polynomial extensions. For a ring automorphism σ ∈ Aut(R), we use the notion of a σ-compatible module M R to obtain results on the couniform dimension of the polynomial modules M[x], M[x ?1], and M[x, x ?1] over suitable skew extension rings.  相似文献   

6.
Let R be a ring and β×α(R) (? β×α(R)) the set of all β × α full (row finite) matrices over R where α and β ≥ 1 are two cardinal numbers. A left R-module M is said to be “injective relative” to a matrix A ? ? β×α(R) if every R-homomorphism from R (β) A to M extends to one from R (α) to M. It is proved that M is injective relative to A if and only if it is A-pure in every module which contains M as a submodule. A right R-module N is called flat relative to a matrix A ?  β×α(R) if the canonical map μ: N? R (β) A → N α is a monomorphism. This extends the notion of (m, n)-flat modules so that n-projectivity, finitely projectivity, and τ-flatness can be redefined in terms of flatness relative to certain matrices. R is called left coherent relative to a matrix A ?  β×α(R) if R (β) A is a left R-ML module. Some results on τ-coherent rings and (m, n)-coherent rings are extended.  相似文献   

7.
An R-module M is called strongly duo if Tr(N, M) = N for every N ≤ M R . Several equivalent conditions to being strongly duo are given. If M R is strongly duo and reduced, then End R (M) is a strongly regular ring and the converse is true when R is a Dedekind domain and M R is torsion. Over certain rings, nonsingular strongly duo modules are precisely regular duo modules. If R is a Dedekind domain, then M R is strongly duo if and only if either MR or M R is torsion and duo. Over a commutative ring, strongly duo modules are precisely pq-injective duo modules and every projective strongly duo module is a multiplication module. A ring R is called right strongly duo if R R is strongly duo. Strongly regular rings are precisely reduced (right) strongly duo rings. A ring R is Noetherian and all of its factor rings are right strongly duo if and only if R is a serial Artinian right duo ring.  相似文献   

8.
G. L. Booth  K. Mogae 《代数通讯》2017,45(1):322-331
For any group G such that G is a right R-module for some ring R, the elements of R act on G as endomorphisms and we obtain the near-ring of R-homogeneous maps on G: MR(G) = {f: G → G|f(ga) = f(g)a for all a ∈ R, g ∈ G}. In the special case that R is a topological ring and G is a topological R-module, we study NR(G): = {f ∈ MR(G)|f is continuous}. In particular, we investigate primeness of the near-ring NR(G) of continuous homogeneous maps on G.  相似文献   

9.
In this note we prove two theorems. In theorem 1 we prove that if M andN are two non-zero reflexive modules of finite projective dimensions over a Gorenstein local ring, such that Hom (M, N) is a third module of syzygies, then the natural homomorphismM* ⊗N → Hom (M, N) is an isomorphism. This extends the result in [7]. In theorem 2, we prove that projective dimension of a moduleM over a regular local ringR is less than or equal ton if and only if ExtR n (M, R) ⊗M → ExtR n (M, M) is surjective; in which case it is actually bijective. This extends the usual criterion for the projectivity of a module.  相似文献   

10.
《代数通讯》2013,41(10):4899-4910
Abstract

In this paper we show that a regular ring R is a generalized stable ring if and only if for every x ∈ R, there exist a w ∈ K(R) and a group G in R such that wx ∈ G. Also we show that if R is a generalized stable regular ring, then for any A ∈ M n (R), there exist right invertible matrices U 1, U 2 ∈ M n (R) and left invertible matrices V 1, V 2 ∈ M n (R) such that U 1 V 1 AU 2 V 2 = diag(e 1,…, e n ) for some idempotents e 1,…, e n  ∈ R.  相似文献   

11.
D. D. Anderson 《代数通讯》2017,45(6):2593-2601
Let M be a left R-module. Then M is a McCoy (resp., dual McCoy) module if for nonzero f(X)∈R[X] and m(X)∈M[X], f(X)m(X) = 0 implies there exists a nonzero rR (resp., mM) with rm(X) = 0 (resp., f(X)m = 0). We show that for R commutative every R-module is dual McCoy, but give an example of a non-McCoy module. A number of other results concerning (dual) McCoy modules as well as arithmetical, Gaussian, and Armendariz modules are given.  相似文献   

12.
Liang Shen  Jianlong Chen 《代数通讯》2013,41(10):3018-3025
Let R be an associative ring with identity. A unital right R-module M is called “strongly finite dimensional” if Sup{G.dim (M/N) | N ≤ M} < +∞, where G.dim denotes the Goldie dimension of a module. Properties of strongly finite dimensional modules are explored. It is also proved that: (1) If R is left F-injective and semilocal, then R is left finite dimensional. (2) R is right artinian if and only if R is right strongly finite dimensional and right semiartinian. Some known results are obtained as corollaries.  相似文献   

13.
N. Dehghani 《代数通讯》2013,41(11):4732-4748
For certain classes 𝒞 of R-modules, including singular modules or modules with locally Krull dimensions, it is investigated when every module in 𝒞 with a finitely generated essential submodule is finitely generated. In case 𝒞 = Mod-R, this means E(M)/M is Noetherian for any finitely generated module MR. Rings R with latter property are studied and shown that they form a class 𝒬 properly between the class of pure semisimple rings and the class of certain max rings. Duo rings in 𝒬 are precisely Artinian rings. If R is a quasi continuous ring in 𝒬 then R ? A ⊕ T where A is a semisimple Artinian ring and T ∈ 𝒬 with Z(TT) ≤ess TT.  相似文献   

14.
Let R be any ring. A right R-module M is called n-copure projective if Ext1(M, N) = 0 for any right R-module N with fd(N) ≤ n, and M is said to be strongly copure projective if Ext i (M, F) = 0 for all flat right R-modules F and all i ≥ 1. In this article, firstly, we present some general properties of n-copure projective modules and strongly copure projective modules. Then we define and investigate copure projective dimensions of modules and rings. Finally, more properties and applications of n-copure projective modules, strongly copure projective modules and copure projective dimensions are given over coherent rings with finite self-FP-injective dimension.  相似文献   

15.
Using the concept of prime submodule defined by Raggi et al. in [16 Raggi , F. , Rios , J. , Rincón , H. , Fernández-Alonso , R. , Signoret , C. ( 2005 ). Prime and irreducible preradicals . J. Algebra Appl. 4 ( 4 ): 451466 .[Crossref], [Web of Science ®] [Google Scholar]], for M ∈ R-Mod we define the concept of classical Krull dimension relative to a hereditary torsion theory τ ∈M-tors. We prove that if M is progenerator in σ[M], τ ∈M-tors such that M has τ-Krull dimension then cl.K τdim (M) ≤ k τ(M). Also we show that if M is noetherian, τ-fully bounded, progenerator of σ[M], and M ∈ 𝔽τ, then cl·K τdim (M) = k τ(M).  相似文献   

16.
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M = Z 2(M) ⊕ S(M) (where Z 2(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.  相似文献   

17.
Let (R, 𝔪) be a commutative, noetherian, local ring, E the injective hull of the residue field R/𝔪, and M ○○ = Hom R (Hom R (M, E), E) the bidual of an R-module M. We investigate the elements of Ass(M ○○) as well as those of Coatt(M) = {𝔭 ∈ Spec(R)|𝔭 = Ann R (Ann M (𝔭))} and provide criteria for equality in one of the two inclusions Ass(M) ? Ass(M ○○) ? Coatt(M). If R is a Nagata ring and M a minimax module, i.e., an extension of a finitely generated R-module by an artinian R-module, we show that Ass(M ○○) = Ass(M) ∪ {𝔭 ∈ Coatt(M)| R/𝔭 is incomplete}.  相似文献   

18.
19.
A torsion-free module M of finite rank over a discrete valuation ring R with prime p is co-purely indecomposable if M is indecomposable and rank M = 1 + dim R/pR (M/pM). Co-purely indecomposable modules are duals of pure finite rank submodules of the p-adic completion of R. Pure submodules of cpi-decomposable modules (finite direct sums of co-purely indecomposable modules) are characterized. Included are various examples and properties of these modules.  相似文献   

20.
A right R-module M is called co-Hopfian if injective endomorphisms of M R are surjective. It is shown that E(M R ) is co-Hopfian if and only if M R does not contain an infinite direct sum ?i ? \mathbbNWi{{\oplus_{i \in \mathbb{N}}W_{i}}} of submodules such that each W i+1 essentially embeds in W i . For many modules M R , including modules over a right FBN or right duo ring with Krull dimension, it is proved that E(M R ) is co-Hopfian if and only if (\mathbbN){(\mathbb{N})} ↪̸ M R for every non-zero X R . For a ring which has enough uniforms, the class of modules with co-Hopfian injective envelope is the same as the class of modules with finite uniform dimension if and only if there are only finitely many isomorphism classes of indecomposable injective modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号