首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The construction of homogeneous monomial groups are given and their basic properties are studied. The structure of a centralizer of an element is completely described and the problem of conjugacy of two elements is resolved. Moreover, the classification of homogeneous monomial groups are determined by using the lattice of Steinitz numbers, namely, we prove the following: Let λ and μ be two Steinitz numbers. The homogeneous monomial groups Σλ(H) and Σμ(G) are isomorphic if and only if λ = μ and H?G provided that the splittings of Σλ(H) and Σμ(G) are regular.  相似文献   

3.
Denote by $\mathfrak{M}$ the set whose elements are the simple 3-dimensional unitary groups U 3(q) and the linear groups L 3(q) over finite fields. We prove that every periodic group, saturated by the groups of a finite subset of $\mathfrak{M}$ , is finite.  相似文献   

4.
We will study all finite groups and their subgroups with at most four relative centralizers.  相似文献   

5.
For a family of group words w we show that if G is a profinite group in which all w-values are contained in a union of finitely many subgroups with a prescribed property, then the verbal subgroup w(G) has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank. If G contains finitely many subgroups G 1, G 2, . . . , G s of finite exponent e whose union contains all γ k -values in G, it is shown that γ k (G) has finite (e, k, s)-bounded exponent. If G contains finitely many subgroups G 1, G 2, . . . , G s of finite rank r whose union contains all γ k -values, it is shown that γ k (G) has finite (k, r, s)-bounded rank.  相似文献   

6.
7.
In this paper we prove that if R is a commutative Noetherian local pro-p domain of characteristic 0, then every finitely generated R-standard group is linear. This work has been partially supported by the FEDER, the MEC Grant MTM2004-04665 and the Ramón y Cajal Program.  相似文献   

8.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

9.
Graph domination numbers and algorithms for finding them have been investigated for numerous classes of graphs, usually for graphs that have some kind of tree-like structure. By contrast, we study an infinite family of regular graphs, the generalized Petersen graphs G(n). We give two procedures that between them produce both upper and lower bounds for the (ordinary) domination number of G(n), and we conjecture that our upper bound ⌈3n/5⌉ is the exact domination number. To our knowledge this is one of the first classes of regular graphs for which such a procedure has been used to estimate the domination number.  相似文献   

10.
E. K. Narayanan 《代数通讯》2018,46(6):2319-2331
A result of Segal states that every complex irreducible representation of a finitely generated nilpotent group G is monomial if and only if G is abelian-by-finite. A conjecture of Parshin, recently proved affirmatively by Beloshapka and Gorchinskii (2016), characterizes the monomial irreducible representations of finitely generated nilpotent groups. This article gives a slightly shorter proof of the conjecture using ideas of Kutzko and Brown. We also give a characterization of the finite-dimensional irreducible representations of two-step nilpotent groups and describe these completely for two-step groups whose center has rank one.  相似文献   

11.
12.
We give lower and upper bounds on the total domination number of the cross product of two graphs, γt(G×H). These bounds are in terms of the total domination number and the maximum degree of the factors and are best possible. We further investigate cross products involving paths and cycles. We determine the exact values of γt(G×Pn) and γt(Cn×Cm) where Pn and Cn denote, respectively, a path and a cycle of length n.  相似文献   

13.
A sharp lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: . Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs: γ(G×H)≥γ(G)+γ(H)−1. Infinite families of graphs that attain the bound are presented. For these graphs it also holds that γt(G×H)=γ(G)+γ(H)−1. Some additional parallels with the total domination number are made.  相似文献   

14.
15.
A JSJ-splitting of a group G over a certain class of subgroups is a graph of groups decomposition of G which describes all possible decompositions of G as an amalgamated product or an HNN extension over subgroups lying in the given class. Such decompositions originated in 3-manifold topology. In this paper we generalize the JSJ-splitting constructions of Sela, Rips–Sela and Dunwoody–Sageev, and we construct a JSJ-splitting for any finitely presented group with respect to the class of all slender subgroups along which the group splits. Our approach relies on Haefliger’s theory of group actions on CAT(0) spaces. Submitted: October 2003 Revision: February 2005 Accepted: June 2005  相似文献   

16.
17.
Let X be a connected graph. An automorphism of X is said to be parabolic if it leaves no finite subset of vertices in X invariant and fixes precisely one end of X and hyperbolic if it leaves no finite subset of vertices in X invariant and fixes precisely two ends of X. Various questions concerning dynamics of parabolic and hyperbolic automorphisms are discussed.The set of ends which are fixed by some hyperbolic element of a group G acting on X is denoted by ?(G). If G contains a hyperbolic automorphism of X and G fixes no end of X, then G contains a free subgroup F such that ?(F) is dense in ?(G) with respect to the natural topology on the ends of X.As an application we obtain the following: A group which acts transitively on a connected graph and fixes no end has a free subgroup whose directions are dense in the end boundary.  相似文献   

18.
19.
In the present paper we give necessary and sufficient conditions for the subgroup separability of the fundamental group of a finite graph of groups with finitely generated abelian vertex groups.

  相似文献   


20.
Let γ(G) and ir(G) denote the domination number and the irredundance number of a graph G, respectively. Allan and Laskar [Proc. 9th Southeast Conf. on Combin., Graph Theory & Comp. (1978) 43–56] and Bollobás and Cockayne [J. Graph Theory (1979) 241–249] proved independently that γ(G) < 2ir(G) for any graph G. For a tree T, Damaschke [Discrete Math. (1991) 101–104] obtained the sharper estimation 2γ(T) < 3ir(T). Extending Damaschke's result, Volkmann [Discrete Math. (1998) 221–228] proved that 2γ(G) ≤ 3ir(G) for any block graph G and for any graph G with cyclomatic number μ(G) ≤ 2. Volkmann also conjectured that 5γ(G) < 8ir(G) for any cactus graph. In this article we show that if G is a block-cactus graph having π(G) induced cycles of length 2 (mod 4), then γ(G)(5π(G) + 4) ≤ ir(G)(8π(G) + 6). This result implies the inequality 5γ(G) < 8ir(G) for a block-cactus graph G, thus proving the above conjecture. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 139–149, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号