首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Claude Marion 《代数通讯》2013,41(3):926-954
Let p1, p2, p3 be primes. This is the final paper in a series of three on the (p1, p2, p3)-generation of the finite projective special unitary and linear groups PSU 3(pn), PSL 3(pn), where we say a noncyclic group is (p1, p2, p3)-generated if it is a homomorphic image of the triangle group Tp1, p2, p3 . This article is concerned with the case where p1 = 2 and p2 ≠ p3. We determine for any primes p2 ≠ p3 the prime powers pn such that PSU 3(pn) (respectively, PSL 3(pn)) is a quotient of T = T2, p2, p3 . We also derive the limit of the probability that a randomly chosen homomorphism in Hom(T, PSU 3(pn)) (respectively, Hom(T, PSL 3(pn))) is surjective as pn tends to infinity.  相似文献   

2.
Yonglin Cao 《代数通讯》2013,41(9):3404-3416
Let R be an Artinian chain ring with a principal maximal ideal. We investigate properties of matrices over R and give matrix representations of R-submodules of R n first, then consider Green's relations, Green's relation equivalent classes, Schützenberger groups of 𝒟-classes, principal factors, and group ?-classes of the multiplicative monoid M n (R) of n × n matrices over R. Furthermore, we show that M n (R) is an eventually regular semigroup and derive basic numerical information of M n (R) when R is finite.  相似文献   

3.
Let ? be a prime ring, 𝒞 the extended centroid of ?, ? a Lie ideal of ?, F be a nonzero generalized skew derivation of ? with associated automorphism α, and n ≥ 1 be a fixed integer. If (F(xy) ? yx) n  = 0 for all x, y ∈ ?, then ? is commutative and one of the following statements holds:

(1) Either ? is central;

(2) Or ? ? M 2(𝒞), the 2 × 2 matrix ring over 𝒞, with char(𝒞) = 2.  相似文献   

4.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

5.
Suppose V is a vector space with dim V = p ≥ q ≥ ?0, and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the “kernel” and the “range” of α, and write n(α) = dim ker α and d(α) = codim ran α. In this article, we study the semigroups AM(p, q) = {α ∈ T(V):n(α) < q} and AE(p, q) = {α ∈ T(V):d(α) < q}. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area,, we also determine all the maximal right simple subsemigroups of AM(p, q).  相似文献   

6.
Cayley graphs on a subgroup ofGL(3,p),p>3 a prime, are defined and their properties, particularly their spectra, studied. It is shown that these graphs are connected, vertex-transitive, nonbipartite, and regular, and their degrees are computed. The eigenvalues of the corresponding adjacency matrices depend on the representations of the group of vertices. The “1-dimensional” eigenvalues can be completely described, while a portion of the “higher dimensional” eigenfunctions are discrete analogs of Bessel functions. A particular subset of these graphs is conjectured to be Ramanujan and this is verified for over 2000 graphs. These graphs follow a construction used by Terras on a subgroup ofGL(2,p). This method can be extended further to construct graphs using a subgroup ofGL(n, p) forn≥4. The 1-dimensional eigenvalues in this case can be expressed in terms of the 1-dimensional eigenvalues of graphs fromGL(2,p) andGL(3,p); this part of the spectra alone is sufficient to show that forn≥4, the graphs fromGL(n, p) are not in general Ramanujan.  相似文献   

7.
The behavior of the random graph G(n,p) around the critical probability pc = is well understood. When p = (1 + O(n1/3))pc the components are roughly of size n2/3 and converge, when scaled by n?2/3, to excursion lengths of a Brownian motion with parabolic drift. In particular, in this regime, they are not concentrated. When p = (1 ‐ ?(n))pc with ?(n)n1/3 →∞ (the subcritical regime) the largest component is concentrated around 2??2 log(?3n). When p = (1 + ?(n))pc with ?(n)n1/3 →∞ (the supercritical regime), the largest component is concentrated around 2?n and a duality principle holds: other component sizes are distributed as in the subcritical regime. Itai Benjamini asked whether the same phenomenon occurs in a random d‐regular graph. Some results in this direction were obtained by (Pittel, Ann probab 36 (2008) 1359–1389). In this work, we give a complete affirmative answer, showing that the same limiting behavior (with suitable d dependent factors in the non‐critical regimes) extends to random d‐regular graphs. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

8.
In Tong-Viet's, 2012 work, the following question arose: Question. Which groups can be uniquely determined by the structure of their complex group algebras?

It is proved here that some simple groups of Lie type are determined by the structure of their complex group algebras. Let p be an odd prime number and S = PSL(2, p 2). In this paper, we prove that, if M is a finite group such that S < M < Aut(S), M = ?2 × PSL(2, p 2) or M = SL(2, p 2), then M is uniquely determined by its order and some information about its character degrees. Let X 1(G) be the set of all irreducible complex character degrees of G counting multiplicities. As a consequence of our results, we prove that, if G is a finite group such that X 1(G) = X 1(M), then G ? M. This implies that M is uniquely determined by the structure of its complex group algebra.  相似文献   

9.
10.
Claude Marion 《代数通讯》2013,41(3):853-925
Let p 1, p 2, p 3 be primes. This is the second article in a series of three on the (p 1, p 2, p 3)-generation of the finite projective special unitary and linear groups PSU3(p n ), PSL3(p n ), where we say a noncyclic group is (p 1, p 2, p 3)-generated if it is a homomorphic image of the triangle group T p 1, p 2, p 3 . This paper is concerned with the case where p 1 = 2 and p 2 = p 3. We determine for any prime p 2 the prime powers p n such that PSU3(p n ) (respectively, PSL3(p n )) is a quotient of T = T 2, p 2, p 2 . We also derive the limit of the probability that a randomly chosen homomorphism in Hom(T, PSU3(p n )) (respectively, Hom(T, PSL3(p n ))) is surjective as p n tends to infinity.  相似文献   

11.
ABSTRACT

In this article, we first consider n × n upper-triangular matrices with entries in a given semiring k. Matrices of this form with invertible diagonal entries form a monoid B n (k). We show that B n (k) splits as a semidirect product of the monoid of unitriangular matrices U n (k) by the group of diagonal matrices. When the semiring is a field, B n (k) is actually a group and we recover a well-known result from the theory of groups and Lie algebras. Pursuing the analogy with the group case, we show that U n (k) is the ordered set product of n(n ? 1)/2 commutative monoids (the root subgroups in the group case). Finally, we give two different presentations of the Schützenberger product of n groups G 1,…, G n , given a monoid presentation ?A i  | R i ? of each group G i . We also obtain as a special case presentations for the monoid of all n × n unitriangular Boolean matrices.  相似文献   

12.
Let n be a natural number and q be the power of a prime p. The general, special and projective special linear groups are denoted by GLn(q), SLn(q) and PSLn(q), respectively. In this paper we find the maximum order of an element of the above groups which is a multiple of p.  相似文献   

13.
Juncheol Han 《代数通讯》2013,41(2):872-879
Let R be a ring with identity, X(R) the set of all nonzero non-units of R and G(R) the group of all units of R. By considering left and right regular actions of G(R) on X(R), the following are investigated: (1) For a local ring R such that X(R) is a union of n distinct orbits under the left (or right) regular action of G(R) on X(R), if J n  ≠ 0 = J n+1 where J is the Jacobson radical of R, then the set of all the distinct ideals of R is exactly {R, J, J 2,…, J n , 0}, and each orbit under the left regular action is equal to the one under the right regular action. (2) Such a ring R is left (and right) duo ring. (3) For the full matrix ring S of n × n matrices over a commutative ring R, the number of orbits under left regular action of G(S) on X(S) is equal to the number of orbits under right regular action of G(S) on X(S); the result also holds for the ring of n × n upper triangular matrices over R.  相似文献   

14.
Let L be a relatively free nilpotent Lie algebra over ? of rank n and class c, with n ≥ 2; freely generated by a set 𝒵. Give L the structure of a group, denoted by R, by means of the Baker–Campbell–Hausdorff formula. Let G be the subgroup of R generated by the set 𝒵 and N Aut(L)(G) the normalizer in Aut(L) of the set G. We prove that the automorphism group of L is generated by GL n (?) and N Aut(L)(G). Let H be a subgroup of finite index in Aut(G) generated by the tame automorphisms and a finite subset X of IA-automorphisms with cardinal s. We construct a set Y consisting of s + 1 IA-automorphisms of L such that Aut(L) is generated by GL n (?) and Y. We apply this particular method to construct generating sets for the automorphism groups of certain relatively free nilpotent Lie algebras.  相似文献   

15.
Let K be a (algebraically closed ) field. A morphism Ag −1 Ag, where AM(n) and gGL(n), defines an action of a general linear group GL(n) on an n × n-matrix space M(n), referred to as an adjoint action. In correspondence with the adjoint action is the coaction α: K[M(n)] → K[M(n)] ⊗ K[GL(n)] of a Hopf algebra K[GL(n)] on a coordinate algebra K[M(n)] of an n × n-matrix space, dual to the conjugation morphism. Such is called an adjoint coaction. We give coinvariants of an adjoint coaction for the case where K is a field of arbitrary characteristic and one of the following conditions is satisfied: (1) q is not a root of unity; (2) char K = 0 and q = ±1; (3) q is a primitive root of unity of odd degree. Also it is shown that under the conditions specified, the category of rational GL q × GL q -modules is a highest weight category.  相似文献   

16.
Boris Širola 《代数通讯》2013,41(9):3267-3279
Suppose G 1 ?  G are complex linear simple Lie groups. Let 1 ?  be the corresponding pair of Lie algebras. For the Killing-orthogonal of 1 in we have a vector space direct sum  =  1, which generalizes the classical Cartan decomposition on the Lie algebras level. In this article we study the corresponding problem of a ‘generalized global Cartan decomposition’ on the Lie groups level for the pair of groups ( G , G 1) = (SL (4,?),Sp (2,?)); here  =  (4,?), 1 =  (2,?), and  = {X ?  | X ? = X}, where X? X ? is the symplectic involution. We prove that G  =  G 1exp  ∪ i G 1exp . The key point of the proof is to study in detail the set exp ; and for that purpose we introduce the J-twisted Pfaffian of size 2n defined on the set of all 2n × 2n matrices X satisfying X ? = X, which is here a natural counterpart of the standard Pfaffian.  相似文献   

17.
ABSTRACT

Let n≥1 be a fixed integer, R a prime ring with its right Martindale quotient ring Q, C the extended centroid, and L a non-central Lie ideal of R. If F is a generalized skew derivation of R such that (F(x)F(y)?yx)n = 0 for all x,yL, then char(R) = 2 and R?M2(C), the ring of 2×2 matrices over C.  相似文献   

18.
Badr Alharbi 《代数通讯》2013,41(5):1939-1966
Let ? = ??, ?1(𝔖 n ) be the Hecke algebra of the symmetric group 𝔖 n . For partitions λ and ν with ν 2 ? regular, define the Specht module S(λ) and the irreducible module D(ν). Define d λν = [S(λ): D(ν)] to be the composition multiplicity of D(ν) in S(λ). In this paper we compute the decomposition numbers d λν for all partitions of the form λ = (a, c, 1 b ) and ν 2 ? regular.  相似文献   

19.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all noncentral elements of R, and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this article we investigate some graph-theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields F and E and integers n, m ≥ 2, if Γ(M n (F))?Γ(M m (E)), then n = m and |F|=|E|.  相似文献   

20.
Let n be an integer, n ≥ 2, and let a field P be a quadratic extension of an infinite field k. Regarding P as a k-vector space of dimension 2, we consider an n-dimensional P-vector space V as a 2n-dimensional k-vector space so the general linear group GL n (P) acting on V is embedded in the group GL 2n (k). Let a field K be an algebraic extension of k. In this article, we determine overgroups of the special linear group SL n (P) in the group GL 2n (K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号