首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Timothy J. Ford 《代数通讯》2017,45(4):1416-1442
We study the Brauer group of an affine double plane π:X𝔸2 defined by an equation of the form z2 = f in two separate cases. In the first case, f is a product of n linear forms in k[x,y] and X is birational to a ruled surface ?1×C, where C is rational if n is odd and hyperelliptic if n is even. In the second case, f = y2?p(x) is the equation of an affine hyperelliptic curve. For π as well as the unramified part of π, we compute the groups of divisor classes, the Brauer groups, the relative Brauer groups, and all of the terms in the sequences of Galois cohomology.  相似文献   

2.
Eric Edo 《代数通讯》2013,41(12):4694-4710
Let R be a PID. We construct and classify all coordinates of R[x, y] of the form p 2 y + Q 2(p 1 x + Q 1(y)) with p 1, p 2 ∈ qt(R) and Q 1, Q 2 ∈ qt(R)[y]. From this construction (with R = K[z]) we obtain nontame automorphisms σ of K[x, y, z] (where K is a field of characteristic 0) such that the subgroup generated by σ and the affine automorphisms contains all tame automorphisms.  相似文献   

3.
Jianhua Zhou 《代数通讯》2013,41(9):3724-3730
Let L, L′ be Lie algebras over a commutative ring R. A R-linear mapping f: L → L′ is called a triple homomorphism from L to L′ if f([x, [y, z]]) = [f(x), [f(y), f(z)]] for all x, y, z ∈ L. It is clear that homomorphisms, anti-homomorphisms, and sums of homomorphisms and anti-homomorphisms are all triple homomorphisms. We proved that, under certain assumptions, these are all triple homomorphisms.  相似文献   

4.
Willian Franca 《代数通讯》2013,41(6):2621-2634
Let R be a simple unital ring. Under a mild technical restriction on R, we will characterize biadditive mappings G: R2 → R satisfying G(u, u)u = uG(u, u), and G(1, r) = G(r, 1) = r for all unit u ∈ R and r ∈ R, respectively. As an application, we describe bijective linear maps θ: R → R satisfying θ(xyx?1y?1) = θ(x)θ(y)θ(x)?1θ(y)?1 for all invertible x, y ∈ R. This solves an open problem of Herstein on multiplicative commutators. More precisely, we will show that θ is an isomorphism. Furthermore, we shall see the existence of a unital simple ring R′ without nontrivial idempotents, that admits a bijective linear map f: R′ → R′, preserving multiplicative commutators, that is not an isomorphism.  相似文献   

5.
S. Akbari  S. Khojasteh 《代数通讯》2013,41(4):1594-1605
Let R be a commutative ring with unity. The cozero-divisor graph of R, denoted by Γ′(R), is a graph with vertex set W*(R), where W*(R) is the set of all nonzero and nonunit elements of R, and two distinct vertices a and b are adjacent if and only if a ? Rb and b ? Ra, where Rc is the ideal generated by the element c in R. Recently, it has been proved that for every nonlocal finite ring R, Γ′(R) is a unicyclic graph if and only if R ? ?2 × ?4, ?3 × ?3, ?2 × ?2[x]/(x 2). We generalize the aforementioned result by showing that for every commutative ring R, Γ′(R) is a unicyclic graph if and only if R ? ?2 × ?4, ?3 × ?3, ?2 × ?2[x]/(x 2), ?2[x, y]/(x, y)2, ?4[x]/(2x, x 2). We prove that for every positive integer Δ, the set of all commutative nonlocal rings with maximum degree at most Δ is finite. Also, we classify all rings whose cozero-divisor graph has maximum degree 3. Among other results, it is shown that for every commutative ring R, gr(Γ′(R)) ∈ {3, 4, ∞}.  相似文献   

6.
7.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

8.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

9.
In this note we study radicals of skew polynomial ring R[x; α] and skew Laurent polynomial ring R[x, x ?1; α], for a skew-Armendariz ring R. In particular, among the other results, we show that for an skew-Armendariz ring R, J(R[x; α]) = N 0(R[x; α]) = Ni?*(R)[x; α] and J(R[x, x ?1; α]) = N 0(R[x, x ?1; α]) = Ni?*(R)[x, x ?1; α].  相似文献   

10.
11.
The nilpotent graph of a group G is a simple graph whose vertex set is G?nil(G), where nil(G) = {y ∈ G | ? x, y ? is nilpotent ? x ∈ G}, and two distinct vertices x and y are adjacent if ? x, y ? is nilpotent. In this article, we show that the collection of finite non-nilpotent groups whose nilpotent graphs have the same genus is finite, derive explicit formulas for the genus of the nilpotent graphs of some well-known classes of finite non-nilpotent groups, and determine all finite non-nilpotent groups whose nilpotent graphs are planar or toroidal.  相似文献   

12.
《代数通讯》2013,41(5):2053-2065
Abstract

We consider the group G of C-automorphisms of C(x, y) (resp. C[x, y]) generated by s, t such that t(x) = y, t(y) = x and s(x) = x, s(y) = ? y + u(x) where u ∈ C[x] is of degree k ≥ 2. Using Galois's theory, we show that the invariant field and the invariant algebra of G are equal to C.  相似文献   

13.
Abstract

Let A be a commutative ring with identity, let X, Y be indeterminates and let F(X,Y), G(X, Y) ∈ A[X, Y] be homogeneous. Then the pair F(X, Y), G(X, Y) is said to be radical preserving with respect to A if Rad((F(x, y), G(x, y))R) = Rad((x,y)R) for each A-algebra R and each pair of elements x, y in R. It is shown that infinite sequences of pairwise radical preserving polynomials can be obtained by homogenizing cyclotomic polynomials, and that under suitable conditions on a ?-graded ring A these can be used to produce an infinite set of homogeneous prime ideals between two given homogeneous prime ideals P ? Q of A such that ht(Q/P) = 2.  相似文献   

14.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

15.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

16.
A weak Cayley table isomorphism is a bijection φ:GH of groups such that φ(xy)~φ(x)φ(y) for all x,yG. Here ~ denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ:GG forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I:GG,x?x?1. Let 𝒲0(G) = ?Aut(G),I?≤𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that PSL(2,pn) has trivial weak Cayley table group, where p≥5 is a prime and n≥1.  相似文献   

17.
18.
Let R be a prime ring of characteristic different from 2, U its right Utumi quotient ring, C its extended centroid and L a not central Lie ideal of R. Suppose that F, G and H are generalized derivations of R, with F≠0, such that F(G(x)x?xH(x)) = 0, for any xL. In this paper we describe all possible forms of F, G and H.  相似文献   

19.
Ming-Chu Chou 《代数通讯》2013,41(2):898-911
Let R be a prime ring, L a noncentral Lie ideal of R, and a ∈ R. Set [x, y]1 = [x, y] = xy ? yx for x, y ∈ R and inductively [x, y]k = [[x, y]k?1, y] for k > 1. Suppose that δ is a nonzero σ-derivation of R such that a[δ(x), x]k = 0 for all x ∈ L, where σ is an automorphism of R and k is a fixed positive integer. Then a = 0 except when char R = 2 and R ? M2(F), the 2 × 2 matrix ring over a field F.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号