首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic ≠ 2 is solvable. We prove that every commutative finite-dimensional algebra 𝔄 over a field F of characteristic ≠ 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.  相似文献   

2.
J. M. Casas  N. Corral 《代数通讯》2013,41(6):2104-2120
We construct the endofunctor 𝔲𝔠𝔢 between the category of Leibniz algebras which assigns to a perfect Leibniz algebra its universal central extension, and we obtain the isomorphism 𝔲𝔠𝔢Lie(𝔮Lie) ? (𝔲𝔠𝔢Leib(𝔮))Lie, where 𝔮 is a perfect Leibniz algebra satisfying the condition [x, [x, y]] + [[x, y], x] = 0, for all x, y ∈ 𝔮. Moreover, we obtain several results concerning the lifting of automorphisms and derivations in a covering. We also study the relationship between the universal central extension of a semidirect product of perfect Leibniz algebras and the semidirect product of the universal central extension of both of them.  相似文献   

3.
Let R be a commutative ring with nonzero identity and Z(R) its set of zero-divisors. The zero-divisor graph of R is Γ(R), with vertices Z(R)?{0} and distinct vertices x and y are adjacent if and only if xy = 0. For a proper ideal I of R, the ideal-based zero-divisor graph of R is Γ I (R), with vertices {x ∈ R?I | xy ∈ I for some y ∈ R?I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we study the relationship between the two graphs Γ(R) and Γ I (R). We also determine when Γ I (R) is either a complete graph or a complete bipartite graph and investigate when Γ I (R) ? Γ(S) for some commutative ring S.  相似文献   

4.
For a commutative ring R with identity, an ideal-based zero-divisor graph, denoted by Γ I (R), is the graph whose vertices are {x ∈ R?I | xy ∈ I for some y ∈ R?I}, and two distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we investigate an annihilator ideal-based zero-divisor graph by replacing the ideal I with the annihilator ideal Ann(M) for a multiplication R-module M. Based on the above-mentioned definition, we examine some properties of an R-module over a von Neumann regular ring, and the cardinality of an R-module associated with Γ Ann(M)(R).  相似文献   

5.
ABSTRACT

Let R be a commutative ring with nonzero identity and let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by Γ I (R), is the graph whose vertices are the set {x ? R\I | xy ? I for some y ? R\I} with distinct vertices x and y adjacent if and only if xy ? I. In the case I = 0, Γ0(R), denoted by Γ(R), is the zero-divisor graph which has well known results in the literature. In this article we explore the relationship between Γ I (R) ? Γ J (S) and Γ(R/I) ? Γ(S/J). We also discuss when Γ I (R) is bipartite. Finally we give some results on the subgraphs and the parameters of Γ I (R).  相似文献   

6.
7.
We show that the Jordan algebra 𝒮 of symmetric matrices with respect to either transpose or symplectic involution is zero product determined. This means that if a bilinear map {.,?.} from 𝒮?×?𝒮 into a vector space X satisfies {x, y}?=?0 whenever x?○?y?=?0, then there exists a linear map T : 𝒮?→?X such that {x,?y}?=?T(x?○?y) for all x, y?∈?𝒮 (here, x?○?y?=?xy?+?yx).  相似文献   

8.
Timothy J. Ford 《代数通讯》2013,41(9):3277-3298
We study algebra classes and divisor classes on a normal affine surface of the form z 2 = f(x, y). The affine coordinate ring is T = k[x, y, z]/(z 2 ? f), and if R = k[x, y][f ?1] and S = R[z]/(z 2 ? f), then S is a quadratic Galois extension of R. If the Galois group is G, we show that the natural map H1(G, Cl(T)) → H1(G, Pic(S)) factors through the relative Brauer group B(S/R) and that all of the maps are onto. Sufficient conditions are given for H1(G, Cl(T)) to be isomorphic to B(S/R). The groups and maps are computed for several examples.  相似文献   

9.
In this paper we prove that a finite partial commutative (idempotent commutative) Latin square can be embedded in a finite commutative (idempotent commutative) Latin square. These results are then used to show that the loop varieties defined by any non-empty subset of the identities {x(xy) = y, (yx)x = y} and the quasi-group varieties defined by any non-empty subset of {x2 = x, x(xy) = y, (yx)x = y}, except possibly {x(xy) = y, (yx)x = y}, have the strong finite embeddability property. It is then shown that the finitely presented algebras in these varities are residually finite, Hopfian, and have a solvable word problem.  相似文献   

10.
Surjeet Kour 《代数通讯》2013,41(11):4100-4110
It is shown that the derivation y r ? x  + (xy s  + g)? y , where 0 ≤ r < s are integers, is a simple derivation of k[x, y], the polynomial ring in two variables over a field k of characteristic zero.  相似文献   

11.
In this paper, we study the existence of multiple positive solutions of boundary value problems for second-order discrete equations Δ2 x(n ? 1) ? pΔx(n ? 1) ? qx(n ? 1)+f(n, x(n)) = 0, n ∈ {1,2,…}, αx(0) ? βΔx(0) = 0, x(∞) = 0. The proofs are based on the fixed point theorem in Fréchet space (see Agarwal and O'Regan, 2001, Cone compression and expansion and fixed point theorems in Fréchet spaces with application, Journal of Differential Equations, 171, 412–42).  相似文献   

12.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

13.
Let R be a reduced commutative ring with 1 ≠ 0. Let R E be the set of equivalence classes for the equivalence relation on R given by x ~ y if and only if ann R (x) = ann R (y). Then R E is a (meet) semilattice with respect to the order [x] ≤ [y] if and only if ann R (y) ? ann R (x). In this paper, we investigate when R E is a lattice and relate this to when R is weakly complemented or satisfies the annihilator condition. We also consider when R is a (meet) semilattice with respect to the Abian order defined by x ≤ y if and only if xy = x 2.  相似文献   

14.
The general solution of the functional equation f(xy) = f(x)h(y) + f(y) on abelian groups is well-known. We present methods for solving this equation on various non-abelian groups. In particular we treat the equation on semidirect products, then extend this treatment to solvable groups. We also find the solution on perfect groups. These results also apply to the more general equation f(xy) = g(x)h(y) + k(y).  相似文献   

15.
16.
If k is a field of characteristic zero, c ∈ k?0, and 1 ≤ s ≤ r are integers such that either r ? s + 1 divides s or s divides r ? s + 1, then it is shown that the derivation y r ? x  + (xy s  + c)? y of the polynomial ring k[x, y] is simple.  相似文献   

17.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

18.
It is well known that in every inverse semigroup the binary operation and the unary operation of inversion satisfy the following three identities:
x=(xx¢)x,       (xx¢)(yy)=(yy)(xx¢),       (xy)z=x(yz") .x=(xx')x, \qquad(xx')(y'y)=(y'y)(xx'), \qquad(xy)z=x(yz') .  相似文献   

19.
20.
Ming-Chu Chou 《代数通讯》2013,41(2):898-911
Let R be a prime ring, L a noncentral Lie ideal of R, and a ∈ R. Set [x, y]1 = [x, y] = xy ? yx for x, y ∈ R and inductively [x, y]k = [[x, y]k?1, y] for k > 1. Suppose that δ is a nonzero σ-derivation of R such that a[δ(x), x]k = 0 for all x ∈ L, where σ is an automorphism of R and k is a fixed positive integer. Then a = 0 except when char R = 2 and R ? M2(F), the 2 × 2 matrix ring over a field F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号