首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation.  相似文献   

2.
A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.  相似文献   

3.
Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous to that of liquid CI in ion traps with internal ionization, and is in marked contrast to that of CI with most other standard GC/MS systems that require a change of the ion source.  相似文献   

4.
5.
A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of fast GC and fast GC-MS and the various trade-offs involved in having powerful and practical fast GC-MS.  相似文献   

6.
Gas chromatography-mass spectrometry (GC-MS) suffers from a major limitation in that an expanding number of thermally labile or low volatility compounds of interest are not amenable for analysis. We found that the elution temperatures of compounds from GC can be significantly lowered by reducing the column length, increasing the carrier gas flow rate, reducing the capillary column film thickness and lowering the temperature programming rate. Pyrene is eluted at 287 degrees C in standard GC-MS with a 30 m x 0.25 mm I.D. column with 1-microm DB5ms film and 1-ml/min He column flow rate. In contrast, pyrene is eluted at 79 degrees C in our "Supersonic GC-MS" system using a 1 m x 0.25 mm I.D. column with 0.1-microm DB5ms film and 100-ml/min He column flow rate. A simple model has been invoked to explain the significantly (up to 208 degrees C) lower elution temperatures observed. According to this model, every halving of the temperature programming rate, or number of separation plates (either through increased flow rate or due to reduced column length), results in approximately 20 degrees C lower elution temperature. These considerably lower elution temperatures enable the analysis of an extended range of thermally labile and low volatility compounds, that otherwise could not be analyzed by standard GC-MS. We demonstrate the analysis of large polycyclic aromatic hydrocarbons (PAHs) such as decacyclene with ten fused rings, well above the current GC limit of PAHs with six rings. Even a metalloporphirin such as magnesiumoctaethylporphin was easily analyzed with elution temperatures below 300 degrees C. Furthermore, a range of thermally labile compounds were analyzed including carbamates such as methomyl, aldicarb, aldicarbsulfone and oxamyl, explosives such as pentaerythritol tetranitrate, Tetryl and HMX, and drugs such as reserpine (608 a.m.u.). Supersonic GC-MS was used, based on the coupling of a supersonic molecular beam (SMB) inlet and ion sources with a bench-top Agilent 6890 GC plus 5972 MSD. The Supersonic GC-MS provides enhanced molecular ion without any ion source related peak tailing. Thus, the lower GC separation power involved in the analysis of thermally labile and low volatility compounds is compensated by increased separation power of the MS gained from the enhanced molecular ion. Several implications of these findings are discussed, including our conclusion that slower chromatography leads to better analysis of thermally labile compounds.  相似文献   

7.
We developed a new instrumental approach, termed Supersonic GC-MS, which achieves fast, sensitive, confirmatory and quantitative analysis of a broad range of pesticides in complex agricultural matrices. Our Supersonic GC-MS system is a modification of a bench-top Agilent 6890 GC+5972 MSD with a supersonic molecular beam (SMB) interface and fly-through EI ion source. One of the main advantages of Supersonic GC-MS is an enhanced molecular ion (M+) in the resulting mass spectra. For example, the M+ was observed in all 88 pesticides that we studied using the Supersonic GC-MS whereas only 36 of 63 (57%) pesticides that we investigated in standard GC-MS exhibited a M+. We also found that the degree of matrix interference is exponentially reduced with the fragment mass by about 20-fold per 100 amu increasing mass. The enhancement of the M+ combined with the reduction in matrix background noise permit rapid full scan analysis of a potentially unlimited number of pesticides, unlike selected ion monitoring or MS-MS in which specific conditions are required in segments for targeted pesticides. Furthermore, unlike the case with chemical ionization, EI-SMB-MS spectra still give accurate identification of compounds using common mass spectral libraries. In practice,we found thatlibraries favor mass spectra in which the M+ appears, thus Supersonic GC-MS produced better spectra for compound identification than standard GC-MS. To achieve even lower identification limits, the M+ plus a second major ion (still using full scan data) gives higher signal-to-chemical noise ratios than the traditional 3-ion approach. The replacement of two low-mass ions with the M+ (supersonic two-ions method) results in a significant reduction of matrix interference by a factor of up to 90. Another main advantage of Supersonic GC-MS is its exceptional suitability for fast GC-MS with high carrier gas flow-rate. Fast Supersonic GC-MS was able to analyze thermally labile pesticides, such as carbamates, that are difficult or impossible to analyze in standard GC-MS. Large volume injection using a ChromatoProbe was also demonstrated, in the 6 min analysis of pesticides at 20 ng/g in a spice matrix.  相似文献   

8.
A new type of electron ionization LC‐MS with supersonic molecular beams (EI‐LC‐MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly‐though EI ion source as vibrationally cold molecules in the SMB, resulting in ‘Cold EI’ (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI‐LC‐MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI‐LC‐MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non‐polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS‐MS as an alternative to lengthy LC‐MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of EI‐LC‐MS with SMB are listed and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Gas chromatography–mass spectrometry (GC–MS) with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMBs) along with electron ionization of vibrationally cold sample compounds in SMB in a fly-through ion source (hence the name Cold EI). Cold EI improves all the central performance aspects of GC–MS, and in this paper, we focus on its improvement of signal-to-noise ratio (S/N) and limits of detection (LODs). We found that the harder the compound for analysis with standard EI, the greater the Cold EI gain in S/N and LOD. The lower LOD and higher S/N of Cold EI emerge from a few reasons: (a) similar ionization yield as standard EI, (b) enhanced abundance of molecular ions, (c) elimination of vacuum background noise, (d) elimination of ion source-related peak tailing and degradation, (e) ability to lower the elution temperatures via the use of high column flow rates, and (f) greater range of thermally labile and low-volatility compounds that can be analyzed. We demonstrate the superior S/N and lower LOD of Cold EI versus standard EI in a range of compounds, from the simple-to-analyze octafluoronaphthalene all the way to reserpine and an organo-metallic compound that cannot be analyzed by standard EI. These compounds include methyl stearate, cholesterol, n-C32H66, large polycyclic aromatic hydrocarbons, dioctyl phthalates, diundecyl phthalate, pentachlorophenol, benzidine, lambda-cyhalothrin, and methidathion. The significantly lower Cold EI LODs that can be over 1000 times better than in standard EI further result in far superior response linearity and greater measurement dynamic range.  相似文献   

10.
Gas chromatography–mass spectrometry (GC-MS) with Cold EI is based on interfacing GC and MS with a supersonic molecular beam (SMB) and sample compounds ionization with a fly-through ion source as vibrationally cold compounds in the SMB (hence the name Cold EI). We explored the use of nitrogen and hydrogen as carrier and make-up gases with Cold EI and found:
  1. Nitrogen is very effective in cooling compounds in SMB and while helium requires 60 ml/min nitrogen provides effective cooling with only 7–8 ml/min combined column and make-up flow rate. Hydrogen is less effective than helium and requires higher flow rates.
  2. The transition from helium to nitrogen (or hydrogen) is simple and fast and requires just closing the helium valve and opening the nitrogen valve.
  3. The same column used with helium can be used with nitrogen or hydrogen.
  4. The same elution times could be obtained with nitrogen or hydrogen as with helium.
  5. The GC separation with nitrogen was reduced compared with helium and peak widths were increased by an average factor of 1.5 for similar elution times. Hydrogen provided ~0.7 narrower peak widths than helium.
  6. The signal with nitrogen was reduced compared with helium by an average factor of 3.3 and the signal loss was reduced with higher compounds mass. With hydrogen the signal loss was about a factor of 1.5 but the baseline noise was higher thus with similar S/N as with nitrogen.
  7. USEPA 8270 semivolatile mixture was easily analyzed with both nitrogen and hydrogen carrier gases.
  相似文献   

11.
Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.  相似文献   

12.
A new approach of flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry (GC x GC-MS) with supersonic molecular beam (SMB) and a quadrupole mass analyzer is presented. Flow modulation uniquely enables GC x GC-MS to be achieved even with the limited scan speed of quadrupole MS, and its 20 ml/min column flow rate is handled, splitless, by the SMB interface. Flow modulation GC x GC-SMB-MS shares all the major benefits of GC x GC and combines them with GC-MS including: (a) increased GC separation capability; (b) improved sensitivity via narrower GC peaks; (c) improved sensitivity through reduced matrix interference and chemical noise; (d) polarity and functional group sample information via the order of elution from the second polar column. In addition, GC x GC-SMB-MS is uniquely characterized by the features of GC-MS with SMB of enhanced and trustworthy molecular ion plus isotope abundance analysis (IAA) for improved sample identification and fast fly-through ion source response time. The combination of flow modulation GC x GC with GC-MS with SMB (supersonic GC-MS) was explored with complex matrices such as diesel fuel analysis and pesticide analysis in agricultural products.  相似文献   

13.
The heavy petroleum fractions produced during refining processes need to be upgraded to useable products to increase their value. Hydrogenated heavy paraffinic fractions can be oxidised to produce high value products that contain a variety of oxygenates. These heavy oxygenated paraffinic fractions need to be characterised to enable the control of oxidation processes and to understand product properties. The accurate identification of the oxygenates present in these fractions by electron ionisation (EI) mass spectrometry is challenging due to the complexity of these heavy fractions. Adding to this challenge is the limited applicability of EI mass spectral libraries due to the absence of molecular ions from the EI mass spectra of many oxygenates. The separation of oxygenates from the complex hydrocarbon matrix prior to high temperature GC‐MS (HT‐GC‐MS) analysis reduces the complexity of these fractions and assists in the accurate identification of these oxygenates. Solid phase extraction (SPE) and supercritical fluid chromatography (SFC) were employed as prefractionation techniques. GC‐MS with supersonic molecular beams (SMBs) (also named GC‐MS with cold‐EI) utilises a SMB interface with which EI is done with vibrationally cold sample compounds in a fly‐through ion source (cold‐EI) resulting in a substantial increase in the molecular ion signal intensity in the mass spectrum. This greatly enhances the accurate identification of the oxygenates in these fractions. This study investigated the ionisation behaviour of oxygenated compounds using cold‐EI. The prefractionation by SPE and SFC and the subsequent analysis with GC‐MS with cold‐EI were applied to an oxygenated heavy paraffinic fraction.  相似文献   

14.
提出了18种食品基质中丙环唑残留量的气相色谱-质谱联用分析方法。样品中丙环唑利用乙腈或乙酸乙酯提取,C18和活性炭串联固相萃取柱净化,采用DB-1701弹性毛细管色谱柱进行分离。采用气相色谱-质谱电子轰击电离源和选择离子监测模式进行测定。在0.02~5.0mg.L-1范围内丙环唑标准溶液的峰面积与浓度呈线性关系(r=0.9995),在0.01,0.02,0.05mg.kg-13个添加水平下丙环唑的回收率在70%~115%之间,相对标准偏差(n=6)小于10.2%,检出限(3S/N)为0.004mg·kg-1。  相似文献   

15.
A new gas chromatography/mass spectrometry (GC/MS) system was designed and evaluated which we have named 'Supersonic GC/MS'. It is based on a modification of a commercially available GC/MS system to include a supersonic molecular beam (SMB) MS interface. In this system the standard electron ionization (EI) ion source was replaced with a fly-through EI ion source mounted in the path of the SMB. A hyperthermal surface ionization (HSI) ion source combined with a 90 degrees ion mirror (for the EI-produced ions) was also added, and placed inside the quadrupole mass analyzer in place of its original EI ion source. The 'Supersonic GC/MS' system requires 18 cm added bench space plus the addition of an air-cooled 60 L/s diffusion pump and a 537 L/min rotary pump. The system is user friendly since all the gas flow rates, heated zones, sampling and data analysis are performed the same way as the original system and are computer-controlled via the original software. Similar EI sensitivity was obtained as with the original system for hexachlorobenzene and octafluoronaphthalene, while improved EI detection limits were demonstrated for methyl stearate and eicosane due to the significant enhancement of their molecular ion abundances. A GC/MS detection limit of 500 ag for pyrene was demonstrated using HSI. Good supersonic expansion cooling was achieved with large alkanes, despite the use of a rotary pump at the nozzle chamber instead of a diffusion pump. High temperature GC/MS analysis was demonstrated for large polycyclic aromatic hydrocarbons (PAHs) including ovalene and decacyclene (ten rings). Library searches with EI mass spectra are demonstrated, and it is explained why the enhancement of the molecular ion actually improves the library search in most cases. The analysis of large phthalate esters is also described, and the improvement obtained is shown to originate from their enhanced molecular and high mass fragment ions.  相似文献   

16.
Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.  相似文献   

17.
This study covers a new method and related instrumentation for whole blood analysis for medical diagnostics. Two-μL whole blood samples were collected using “minimal invasive” diabetes lancet and placed on a thin glass rod mounted on a newly designed BloodProbe. The BloodProbe with the whole blood sample was inserted directly into a ChromatoProbe mounted on the GC inlet, and thus, no sample preparation was involved. The analysis was performed within 10 min using a GC-MS with Cold EI that is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB (hence the name Cold EI). Our blood analysis revealed several observations: (1) Detailed mass chromatograms were generated with full range of all the nonpolar lipids in blood including fatty acids, cholesterol, cholesteryl esters, vitamin E, monoglycerides, diglycerides, and triglycerides. (2) The analysis of whole blood was found to be as informative as the conventional clinical analysis of blood serum. (3) Cholesteryl esters were more sensitive than free cholesterol alone to the effect of diet of obese people. (4) Major enhancement of several fatty acid methyl esters was found in the blood of a cancer patient with liver dysfunction. (5) Vitamin E as both α- and β-tocopherol was found with person-dependent ratio of these two compounds. (6) Elemental sulfur S8 was identified in blood. (7) Several drugs and other compounds were found and need further study of their correlation to medical issues.  相似文献   

18.
A new type of photoionization ion source was developed for the ionization of cold molecules in supersonic molecular beams (named Cold PI). The system was based on a GC–MS with supersonic molecular beams and its fly‐through EI of cold molecules ion source (Cold EI) plus quadrupole mass analyzer. A continuously operated deuterium VUV photoionization lamp was added and placed above and between the supersonic nozzle and skimmer whereas the Cold EI ion source served only as a portion of the ion transfer ion optics. The supersonic nozzle and skimmer were voltage biased and the VUV light crossed the supersonic expansion about 10 mm from the nozzle. We obtained over three orders of magnitude enhancement in the relative abundance of the molecular ion of squalane in Cold PI versus in photoionization of this compound as a thermal compound. Accordingly, we also proved that standard photoionization is not as soft ionization method as previously perceived for large compounds. We found that Cold PI is as soft as and possibly softer than field ionization; thus, it could be the softest known ionization method. The ionization yield was about 200–300 times weaker than with Cold EI yet our limit of detection was about 200 femtogram in SIM mode for cholesterol and pyrene which is reasonable. Practically, all hydrocarbons gave only molecular ions with rather uniform response whereas alcohols gave some molecular ions plus major fragment ions particularly with a loss of water (similarly to field ionization). We tested Cold PI in the GC–MS analysis of diesel fuels and analyzed the time averaged data for group type information. We also found that we can analyze the diesel fuels by fast under 20‐s flow injection analysis in which the generated averaged mass spectrum of molecular ions only could serve for the characterization of fuels.  相似文献   

19.
The determination of 14 N-nitrosamines by a supersonic molecular beam electron ionization mass spectrometer equipped with triple quadruple analyzer, GC/SMB/EI/QQQ/MS is presented. The supersonic molecular beam electron ionization ion source allows the elucidation of the molecular ion of 13 out of the 14 examined nitrosamines (except for diphenylnitrosamine which was degraded before the analysis). It was possible to use the molecular ions of all the nitrosamines as the parent ions for multiple reactions monitoring mode, which in turn allows significant increase of specificity and lowering of the method limit of detection of the higher molecular weight nitrosamines. The instrumental LOD for different N-nitrosamines was 1–5 pg injection−1. The proposed method was exemplified by analysis of N-nitrosamines and N-nitrosatables in rubber teats according to the British Standard BS EN 12868:1999.  相似文献   

20.
We report the observation of a new physical phenomenon of the addition of 2 hydrogen atoms to molecular ions thus forming [M + 2H]+ ions. We demonstrate such second hydrogen atom abstraction onto the molecular ions of pentaerythritol and trinitrotoluene (TNT). We used both gas chromatography mass spectrometry (GC‐MS) with supersonic molecular beam (SMB) with methanol added into its make‐up gas and electron ionization (EI) liquid chromatography mass spectrometry (LC‐MS) with SMB with methanol as the LC solvent. We found that the formation of methanol clusters resulted upon EI in the formation of dominant protonated pentaerythritol ion at m/z = 137 plus about 70% relative abundance of pentaerythritol molecular ion with 2 additional hydrogen atoms at m/z = 138 which is well above the 5.7% natural C13 isotope abundance of protonated pentaerythritol. Similarly, we found an abundant protonated TNT ion at m/z = 228 and a similar abundance of TNT molecular ion with 2 additional hydrogen atoms at m/z = 229. Upon the use of deuterated methanol (CD3OD) as the solvent, we observed an abundant m/z = 231 (M + 2D)+ of TNT with 2 deuterium atoms. We found such abundant second hydrogen atom abstraction with butylglycolate and at low abundances in dioctylphthalate, Vitamin K3, phenazine, and RDX. At this time, we are unable to report the magnitude and frequency of occurrence of this phenomenon in standard electrospray LC‐MS. This observation could have important implications on the provision of elemental formula from mass spectra that are involved with protonated molecules. Accordingly, while accurate mass measurements can serve for the generation of elemental formula, their further support and improvement via isotope abundance analysis are questionable. Consequently, if a given compound can be analyzed by both GC‐MS and LC‐MS, its GC‐MS analysis can be superior for the provision of accurate elemental formulae if its EI mass spectrum exhibits abundant molecular ions such as with GC‐MS with SMB (also known as cold EI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号