首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper considers an SEIS epidemic model with infectious force in the latent period and a general population-size dependent contact rate.A threshold parameter R is identified.If R≤1,the disease-free equilibrium O is globally stable.IfR>1,there is a unique endemic equilibrium and O is unstable.For two important special cases of bilinear and standard incidence,sufficient conditions for the global stability of this endemic equilibrium are given.The same qualitative results are obtained provided the threshold is more than unity for the corresponding SEIS model with no infectious force in the latent period.Some existing results are extended and improved.  相似文献   

2.
An HIV/AIDS epidemic model with different latent stages and treatment is constructed. The model allows for the latent individuals to have the slow and fast latent compartments. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are determined by the basic reproduction number under some conditions. If R0 < 1, the disease free equilibrium is globally asymptotically stable, and if R0 > 1, the endemic equilibrium is globally asymptotically stable for a special case. Some numerical simulations are also carried out to confirm the analytical results.  相似文献   

3.
In this paper, some SEIRS epidemiological models with vaccination and temporary immunity are considered. First of all, previously published work is reviewed. In the next section, a general model with a constant contact rate and a density-dependent death rate is examined. The model is reformulated in terms of the proportions of susceptible, incubating, infectious, and immune individuals. Next the equilibrium and stability properties of this model are examined, assuming that the average duration of immunity exceeds the infectious period. There is a threshold parameter Ro and the disease can persist if and only if Ro exceeds one. The disease-free equilibrium always exists and is locally stable if Ro < 1 and unstable if Ro > 1. Conditions are derived for the global stability of the disease-free equilibrium. For Ro > 1, the endemic equilibrium is unique and locally asymptotically stable.For the full model dealing with numbers of individuals, there are two critical contact rates. These give conditions for the disease, respectively, to drive a population which would otherwise persist at a finite level or explode to extinction and to cause a population that would otherwise explode to be regulated at a finite level. If the contact rate β(N) is a monotone increasing function of the population size, then we find that there are now three threshold parameters which determine whether or not the disease can persist proportionally. Moreover, the endemic equilibrium need no longer be locally asymptotically stable. Instead stable limit cycles can arise by supercritical Hopf bifurcation from the endemic equilibrium as this equilibrium loses its stability. This is confirmed numerically.  相似文献   

4.
In this paper, a delayed Susceptible‐Exposed‐Infectious‐Susceptible (SEIS) infectious disease model with logistic growth and saturation incidence is investigated, where the time delay describes the latent period of the disease. By analyzing corresponding characteristic equations, the local stability of a disease‐free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using the persistence theory for infinite dimensional dynamic systems, it is proved that if the basic reproduction number is greater than unity, the system is permanent. By means of suitable Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the disease‐free equilibrium and the endemic equilibrium, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Control of epidemic infections is a very urgent issue today. To develop an appropriate strategy for vaccinations and effectively prevent the disease from arising and spreading, we proposed a modified Susceptible‐Infected‐Removed model with impulsive vaccinations. For the model without vaccinations, we proved global stability of one of the steady states depending on the basic reproduction number R0. As typically in the epidemic models, the threshold value of R0 is 1. If R0 is greater than 1, then the positive steady state called endemic equilibrium exists and is globally stable, whereas for smaller values of R0, it does not exist, and the semi‐trivial steady state called disease‐free equilibrium is globally stable. Using impulsive differential equation comparison theorem, we derived sufficient conditions under which the infectious disease described by the considered model disappears ultimately. The analytical results are illustrated by numerical simulations for Hepatitis B virus infection that confirm the theoretical possibility of the infection elimination because of the proper vaccinations policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an SVEIS epidemic model for an infectious disease that spreads in the host population through horizontal transmission is investigated. The role that temporary immunity (natural, disease induced, vaccination induced) plays in the spread of disease, is incorporated in the model. The total host population is bounded and the incidence term is of the Holling-type II form. It is shown that the model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. The global dynamics are completely determined by the basic reproduction number R0. If R0<1, the disease-free equilibrium is globally stable which leads to the eradication of disease from population. If R0>1, a unique endemic equilibrium exists and is globally stable in the feasible region under certain conditions. Further, the transcritical bifurcation at R0=1 is explored by projecting the flow onto the extended center manifold. We use the geometric approach for ordinary differential equations which is based on the use of higher-order generalization of Bendixson’s criterion. Further, we obtain the threshold vaccination coverage required to eradicate the disease. Finally, taking biologically relevant parametric values, numerical simulations are performed to illustrate and verify the analytical results.  相似文献   

7.
In this paper, a multistage susceptible‐infectious‐recovered model with distributed delays and nonlinear incidence rate is investigated, which extends the model considered by Guo et al. [H. Guo, M. Y. Li and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012), 261–279]. Under some appropriate and realistic conditions, the global dynamics is completely determined by the basic reproduction number R0. If R0≤1, then the infection‐free equilibrium is globally asymptotically stable and the disease dies out in all stages. If R0>1, then a unique endemic equilibrium exists, and it is globally asymptotically stable, and hence the disease persists in all stages. The results are proved by utilizing the theory of non‐negative matrices, Lyapunov functionals, and the graph‐theoretical approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
研究了一类潜伏期、染病期均具传染力且有不同饱和接触率C_1(N)和C_2(N)的SEIS传染病模型,得到了判断疾病流行与否的基本再生数R_0.利用周期轨道轨道稳定性和Poincare-Bendixson性质理论,证明了当R_0>1时,正平衡点P~*在T内全局渐近稳定,疾病流行形成地方病.  相似文献   

9.
研究了一类潜伏期和感染期均传染的SEIQR模型的全局稳定性,找到疾病绝灭和持续生存的阈值——基本再生数R0,证明了无病平衡点和地方病平衡点的存在性和全局渐近稳定性,揭示了隔离对疾病控制的积极作用。  相似文献   

10.
This paper considers two differential infectivity(DI) epidemic models with a nonlinear incidence rate and constant or varying population size. The models exhibits two equilibria, namely., a disease-free equilibrium O and a unique endemic equilibrium. If the basic reproductive number σ is below unity,O is globally stable and the disease always dies out. If σ〉1, O is unstable and the sufficient conditions for global stability of endemic equilibrium are derived. Moreover,when σ〈 1 ,the local or global asymptotical stability of endemic equilibrium for DI model with constant population size in n-dimensional or two-dimensional space is obtained.  相似文献   

11.
In this paper, an SIRS epidemic model with a nonlinear incidence rate and a time delay is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed. By comparison arguments, it is proved that if the basic reproductive number R0<1, the disease-free equilibrium is globally asymptotically stable. If R0>1, by means of an iteration technique, sufficient conditions are derived for the global asymptotic stability of the endemic equilibrium.  相似文献   

12.
In this paper, we propose and analyse a model of dynamics trans-mission of malaria, incorporating varying degrees p of susceptible and ofinfectious that makes the dynamic of the overall host population integrateSEIRS, SEIS, SIRS and SIS at the same time. For this model we compute anew threshold number and establish the global asymptotic stability of thedisease-free equilibrium when R0 &lt; &lt; 1. If &lt; R0 &lt; 1, the system admits aunique endemic equilibrium (EE) and if R0 &gt; 1 depending on case the systemadmits one or two endemic equilibrium. Numerical simulations are presentedfor dierent value of R0, based on data collected in the literature. Finally,the impact of parameters p and of system dynamics are investigated.  相似文献   

13.
In this paper, a delayed HIV/AIDS epidemic model with saturation incidence is proposed and analyzed. The equilibria and their stability are investigated. The model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. It is found that if the threshold R 0<1, then the disease-free equilibrium is globally asymptotically stable, and if the threshold R 0>1, the system is permanent and the endemic equilibrium is asymptotically stable under certain conditions.  相似文献   

14.
两类带有确定潜伏期的SEIS传染病模型的分析   总被引:2,自引:0,他引:2  
通过研究两类带有确定潜伏期的SEIS传染病模型,发现对种群的常数输入和指数输入会使疾病的传播过程产生本质的差异.对于带有常数输入的情形,找到了地方病平衡点存在及局部渐近稳定的阈值,证明了地方病平衡点存在时一定局部渐近稳定,并且疾病一致持续存在.对于带有指数输入的情形,发现地方病平衡点当潜伏期充分小时是局部渐近稳定的,当潜伏期充分大时是不稳定的.  相似文献   

15.
In this paper, we investigate a Vector‐Borne disease model with nonlinear incidence rate and 2 delays: One is the incubation period in the vectors and the other is the incubation period in the host. Under the biologically motivated assumptions, we show that the global dynamics are completely determined by the basic reproduction number R0. The disease‐free equilibrium is globally asymptotically stable if R0≤1; when R0>1, the system is uniformly persistent, and there exists a unique endemic equilibrium that is globally asymptotically. Numerical simulations are conducted to illustrate the theoretical results.  相似文献   

16.
This paper considers an epidemic model of a vector-borne disease which has direct mode of transmission in addition to the vector-mediated transmission. The incidence term is assumed to be of the bilinear mass-action form. We include both a baseline ODE version of the model, and, a differential-delay model with a discrete time delay. The ODE model shows that the dynamics is completely determined by the basic reproduction number R0. If R0?1, the disease-free equilibrium is globally stable and the disease dies out. If R0>1, a unique endemic equilibrium exists and is locally asymptotically stable in the interior of the feasible region. The delay in the differential-delay model accounts for the incubation time the vectors need to become infectious. We study the effect of that delay on the stability of the equilibria. We show that the introduction of a time delay in the host-to-vector transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation.  相似文献   

17.
A nonlinear mathematical model is proposed to study the effect of tuberculosis on the spread of HIV infection in a logistically growing human population. The host population is divided into four sub classes of susceptibles, TB infectives, HIV infectives (with or without TB) and that of AIDS patients. The model exhibits four equilibria namely, a disease free, HIV free, TB free and an endemic equilibrium. The model has been studied qualitatively using stability theory of nonlinear differential equations and computer simulation. We have found a threshold parameter R0 which is if less than one, the disease free equilibrium is locally asymptotically stable otherwise for R0>1, at least one of the infections will be present in the population. It is shown that the positive endemic equilibrium is always locally stable but it may become globally stable under certain conditions showing that the disease becomes endemic. It is found that as the number of TB infectives decreases due to recovery, the number of HIV infectives also decreases and endemic equilibrium tends to TB free equilibrium. It is also observed that number of AIDS individuals decreases if TB is not associated with HIV infection. A numerical study of the model is also performed to investigate the influence of certain key parameters on the spread of the disease.  相似文献   

18.
In this paper we consider an intra-host model for the dynamics of malaria. The model describes the dynamics of the blood stage malaria parasites and their interaction with host cells, in particular red blood cells (RBC) and immune effectors. We establish the equilibrium points of the system and analyze their stability using the theory of competitive systems, compound matrices and stability of periodic orbits. We established that the disease-free equilibrium is globally stable if and only if the basic reproduction number satisfies R0?1 and the parasite will be cleared out of the host. If R0>1, a unique endemic equilibrium is globally stable and the parasites persist at the endemic steady state. In the presence of the immune response, the numerical analysis of the model shows that the endemic equilibrium is unstable.  相似文献   

19.
In this paper, a modified SIS model with an infective vector on complex networks is proposed and analyzed, which incorporates some infectious diseases that are not only transmitted by a vector, but also spread by direct contacts between human beings. We treat direct human contacts as a social network and assume spatially homogeneous mixing between vector and human populations. By mathematical analysis, we obtain the basic reproduction number R0 and study the effects of various immunization schemes. For the network model, we prove that if R0<1, the disease-free equilibrium is globally asymptotically stable, otherwise there exists an unique endemic equilibrium such that it is globally attractive. Our theoretical results are confirmed by numerical simulations and suggest a promising way for the control of infectious diseases.  相似文献   

20.
In this paper, a delay cholera model with constant infectious period is investigated. By analyzing the characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium of the model is established. It is proved that if the basic reproductive number $\mathcal{R}_0>1$, the system is permanent. If $\mathcal{R}_0<1$, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the disease-free equilibrium. If $\mathcal{R}_0>1$, also by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号