首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Methylene Compounds of Non-Metals. VI. Amides of Methane-bis(phosphonous Acid), -bis(phosphonic Acid) and -bis(thiophosphonic Acid) Symmetrical- and asymmetrical-substituted amides of methane-bis(phosphonous acid), -bis(phosphonic acid) and -bis(thiophosphonic acid) have been obtained by stepwise aminolysis of the chlorides Cl2(Z)PCH2P(Z)Cl2 ( 1 : Z = electron pair; 7 : Z = S; 13 : Z = O) and the fluoride F2(S)PCH2P(S)F2 19 with dimethylaminotrimethylsilane. Oxidation reactions of trivalent phosphonous amides with sulfur and dimethylsulfoxide have also been investigated.  相似文献   

2.
Synthesis and Properties of Lineary Phosphorylchlorphosphazenes The phosphorylchlorphosphazenes, Cl2(O)P—[N?PCl2]n—Cl, (n = 1, 2, 3) react like POCl3 with hexamethyldisilazan forming silylamides, Cl2(O)P—[N ? PCl2]n—NHSi(CH3)3, (n = 0, 1, 2, 3). From these are obtained the phosphorylchlorphosphazenes by reaction with PCl5 containing one group —N ? PCl2 more.  相似文献   

3.
NH4[Re3Cl10(OH2)2] · 2 H2O: Synthesis and Structure. An Example for “Strong” N? H …? O and O? H …? Cl Hydrogen Bonding The red NH4[Re3Cl10(OH2)2] · 2 H2O crystallizes from hydrochloric-acid solutions of ReCl3 with NH4Cl. It is tetragonal, P41212, No. 92, a = 1157.6, c = 1614.5 pm, Z = 4. The crystal structure contains “isolated” clusters [Re3Cl10(OH2)2]?. These contain Cl…?H? O? H…?Cl units with “very strong” hydrogen bonds: distances Cl? O are only 286 pm. NH4+ has seven Cl? as nearest neighbours and, additionally, one H2O which belongs to a cluster [d(N? O1) = 271 pm] and one crystal water [d(N? O2) = 286 pm].  相似文献   

4.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

5.
Preparation and Properties of Imidodiphosphoric Acid Amides Trichlorophosphazene phosphoryldichloride, Cl3P?N? P(O)Cl2, reacts with the stoichiometric amount of anhydrous formic acid resulting the tetrachloride of the imidodiphosphoric acid, Cl2(O)P? NH? P(O)Cl2. This tetrachloride yields with diazomethane the N-methyl compound, Cl2(O)P? N(CH3)? P(O)Cl2. The tetramide of the imidodiphosphoric acid and its octalkyl derivatives are obtained by reaction of the tetrachloride with ammonia, dimethylamine, and diethylamine, respectively.  相似文献   

6.
The crystal structure of the title compound {(C5H14N2)2[Cd2Cl8]}n, (I), consists of hydrogen‐bonded 2‐methylpiperazinediium (H2MPPA2+) cations in the presence of one‐dimensional polymeric {[CdCl33‐Cl)]2−}n anions. The CdII centres are hexacoordinated by three terminal chlorides and three bridging chlorides and have a slightly distorted octahedral CdCl33‐Cl)3 arrangement. The alternating CdCl6 octahedra form four‐membered Cd2Cl2 rings by the sharing of neighbouring Cd–Cl edges to give rise to extended one‐dimensional ladder‐like chains parallel to the b axis, with a Cd...Cd distance of 4.094 (2) Å and a Cd...Cd...Cd angle of 91.264 (8)°. The H2MPPA2+ cations crosslink the [CdCl33‐Cl)]n chains by the formation of two N—H...Cl hydrogen bonds to each chain, giving rise to one‐dimensional ladder‐like H2MPPA2+–Cl2 hydrogen‐bonded chains [graph set R42(14)]. The [CdCl33‐Cl)]n chains are interwoven with the H2MPPA2+–Cl2 hydrogen‐bonded chains, giving rise to a three‐dimensional supramolecular network.  相似文献   

7.
Formation and N.M.R.-Spectroscopic Characterization of Alk-(ar-)oxy Derivatives of Trichlorophosphazene-N-phosphoryldichloride, Cl3P?N? P(O)Cl2, Imido- and N-Methylimidodiphosphoryltetrachloride, Cl2P(O)NHP(O)Cl2 and Cl2P(O)N(CH3)P(O)Cl2 The ester chlorides and esters P2NOCl5?x(OR)x (x = 1?5), P2(NH)O2Cl4?x(OR)x (x = 1–4) and P2(NCH3)O2Cl4–x(OR)x (x = 1–4) derived from the title compounds by substitution of chlorine atoms by alk- or aroxy groups are characterized by their 31P-n.m.r. data. The possibilities for forming these compounds by alcoholysis, chloridolysis, dealkylation and P? N-bond formation are discussed.  相似文献   

8.
Trans-[Cr(NH3)4(H2O)Cl]Cl2 (A) crystallizes in the monoclinic space group P21/m (No. 11) with a = 6.556(1), b = 10.630(5), c = 6.729(2) Å and β = 96.15(3)°. Trans-[Cr(NH3)4Cl2]I (B) has monoclinic C2/m (No. 12) space group and a = 9.877(2), b = 8.497(2), c = 6.047(2) Å and β = 108.98(2)°. Both unit cells contain two formula units. Cr? Cl, Cr? O(H2O) and three independent Cr? N(NH3) distances for A are 2.98(1), 2.023(2), 2.067(2), 2.086(3) and 2.064(3) °. Cr? Cl and Cr? N(NH3) bonds in B are 2.325(1) and 2.071(2) °. All octahedral angles are close to 90 and 180°. Both structures were refined to very low R values. Water molecule from trans-[Cr(NH3)4(H2O)Cl]2+ is hydrogen bonded to both ionic chlorides. Cation and two anions form the motive which repeats itself in the crystal. Cations and anions of the second structure are distributed in layers. Each cation and anion have coordination number eight.  相似文献   

9.
Crystal Structures of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 and PPh4[ReOCl4] Single crystals of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 were obtained by chilling dilute solutions of the solvate [ReCl4(PhC?CPh)POCl3] in CH2Cl2. PPh4[ReOCl4] was formed by the reaction of the diphenyl acetylene complex [ReCl5(PhC?CPh)] with PPh4Cl · H2O in CH2Cl2 solution. [ReCl4(PhC?CPh)]2 · 2 CH2Cl2: space group P21/c, Z = 2, 2244 observed independent reflexions, R = 0.038. Lattice parameters (19°C): a = 987.2 pm; b = 1533.9 pm; c = 1193.8 pm; β = 90.17° The compound forms centrosymmetrical dimeric molecules with ReCl2Re bridges with Re? Cl distances of 241.2 and 267.6 pm. The longer Re? Cl bond is situated in trans-position to the equatorial, side-on coordinated diphenyl acetylene ligand with mean Re? C distances of 200 pm. PPh4[ReOCl4]: space group P4/n, Z = 2, 1487 observed, independent reflexions, R = 0.047. Lattice parameters (19°C): a = b = 1272.0 pm; c = 771.3 pm. The compound crystallizes in the AsPh4[RuNCl4] type; it consists of [ReOCl4]? anions and PPh4+ cations. The anions are tetragonal with C4v symmetry and bond lengths Re? O = 165.4 pm and Re? Cl = 232.6 pm; the bond angle OReCl is 106.7°.  相似文献   

10.
[La2Cl3(OAc)2(H2O)7]Cl: The First Lanthanide-Acetate-Halide-Hydrate with Chloride in Inner-Sphere Coordination [La2Cl3(OAc)2(H2O)7]Cl has been obtained as single crystals through the reaction of LaCl3 · 7H2O with diluted acetic acid or from La2O3 with acetyl chloride. In the crystal structure (triclinic, Z = 2, P1 (no. 2), a = 919.6(2), b = 950.7(2), c = 1178.9(2) pm, α = 82.52(1), β = 84.14(1), γ = 64.69(1)°, R = 0.021, Rw = 0.020), La3+ is surrounded by nine ligands (O, Cl). La1 has two chloride and seven oxygen ligands whereas La2 has one chloride and eight oxygen atoms as nearest neighbours. Four of the oxygen ligands of each lanthanum cation originate from a ?tetradentate”? acetate anion, the others from crystal water molecules. The ?tetradentate”? acetate groups are coordinated not only to one central La3+ as chelate ligands, but also to the ?left”? and ?right”? La3+ neighbours. Thereby, a one-dimensional infinite cationic chain, [La2Cl3(OAc)2(H2O)7]+, is formed that runs in the [011] direction. These chains are held together by ?lonesome”? chloride ions which are surrounded by (4 + 1) water molecules and connected to the chains via hydrogen bonds.  相似文献   

11.
Synthesis of Lineary and Branched Phosphazenes from N-silylated Phosphoryl Amides The use of N-silylated phosphoryl amides in the reaction with PCl5 favours the KIRSANOV reaction and reduces undesirable substitution reactions. However, silylated monoamides, X2P(O)NHSiMe3 (X = OEt, NEt2), do not give the expected trichlorophosphazenes but the isomeric N-dichlorophosphoryl phosphazenes, Cl2P(O)? N?PClX2, which are also formed in the reaction of (EtO)2P(O)NCl2 with PCl5. As the first phosphoryl-P, P-bis(trichlorophosphazene) (EtO)P(O)(N?PCl3)2 could be obtained in the reaction of PCl5 with the silylated diamide (EtO)P(O)(NHSiMe3)2. Tris reactivity of silylated amides to P? Cl compounds decreases in the row PCl5 > POCl3 > CIP(O)(OEt)2 > ClP(O)(NEt2)2. In the reaction with phosphoryl chlorides the preferred formation of compounds with P? NH? P bridges could not be observed.  相似文献   

12.
The primary geometry about the TeIV atom in the title compound, [TeCl2(C8H6Cl)(C3H5O)] or C11H11Cl3OTe, is a pseudo‐trigonal‐bipyramidal arrangement, with two Cl atoms in apical positions, and the lone pair of electrons and C atoms in the equatorial plane. The TeIV atom is involved in three secondary interactions, two intramolecular [Te?O = 2.842 (3) Å and Te?Cl3 = 3.209 (1) Å] and one intermolecular [Te?Cl = 3.637 (1) Å], the latter giving rise to a helical chain. These helices are linked by C—H?O interchain interactions.  相似文献   

13.
In Arbuzov-type reactions CFnCl3?nSCl reacts with ROPCl2 (R = CH3, C2H5) to give CFnCl3?nSP(O)Cl2 (n = 3,2,1,0). The corresponding reaction with CF3SeX (X = Cl, Br) produces CF3SeP(O)Cl2 in good yields only in the presence of catalysts such as SbCl5 or BCl3. Reactions between P4 and the sulfenylchlorides produce (CFnCl3?nS)xPCl3?n (n = 3,2,1 and x = 1,2). On heating CFn′ Cl3?n′ SP(O)Cl2 (n′ = 2,1,0) decompose to P(O)Cl3 and SCFn′ Cl2?n′. During this process fluorination of P(O)Cl3 to P(O)F3 by SCF2 is observed. A Cl/Br exchange between CFnCl3?nSP(O)Cl2 (n = 3,2) and PBr3 was proved 19F? and 31P-NMR-spectroscopically.Chemical and physical properties of the newly synthesized compounds will be discussed.  相似文献   

14.
Hydrothermal reactions of tridentate rigid 2,4,6‐tris‐(benzimidazolyl‐2‐yl)pyridine (pytbzim) ligand and Zn(II)/Cd(II) salts generate binuclear complexes {[Cd2Cl2(pytbzim)2(H2O)2]·2NO3}n ( 1 ) and two isomorphs {[M2Cl2(pytbzim)2(H2O)2]Cl2·2H2O}n [M=Cd ( 2 ), Zn ( 3 )]. All complexes include [M2Cl2(pytbzim)2(H2O)2] dimers, which are further connected into a three‐dimensional supramolecular networks through ?‐? stacking interaction and hydrogen bonds. The solid state photoluminescent studies reveal good fluorescent properties of the pytbzim ligand and complexes 1 – 2 at room temperature.  相似文献   

15.
Dichlorophosphate Complexes of the Nitrido Chlorides of Molybdenum and Tungsten Tetraphenylarsonium dichlorophosphate AsPh4[PO2Cl2], is prepared by the reaction of AsPh4Cl with P2O3Cl4. The vibrational spectrum is reported as well as the valence force constants of the [PO2Cl2]? ion. The f-values are clearly smaller than those of the isoelectronic SO2Cl2 molecule. The dichlorophosphate ion forms complexes with the nitride chlorides MNCl3 (M ? Mo, W) of the type [MNCl3(PO2Cl2)]22?, which are characterized by their i.r. spectra.  相似文献   

16.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

17.
A detailed analysis of the 35Cl/37Cl isotope effects observed in the 19.11 MHz 103Rh NMR resonances of [RhCln(H2O)6−n]3−n complexes (n = 3–6) in acidic solution at 292.1 K, shows that the ‘fine structure’ of each 103Rh resonance can be understood in terms of the unique isotopologue and in certain instances the isotopomer distribution in each complex. These 35Cl/37Cl isotope effects in the 103Rh NMR resonance of the [Rh35/37Cl6]3− species manifest only as a result of the statistically expected 35Cl/37Cl isotopologues, whereas for the aquated species such as for example [Rh35/37Cl5(H2O)]2−, cis-[Rh35/37Cl4(H2O)2] as well as the mer-[Rh35/37Cl3(H2O)3] complexes, additional fine-structure due to the various possible isotopomers within each class of isotopologues, is visible. Of interest is the possibility of the direct identification of stereoisomers cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2], fac-[RhCl3(H2O)3] and mer-[RhCl3(H2O)3] based on the 103Rh NMR line shape, other than on the basis of their very similar δ(103Rh) chemical shift. The 103Rh NMR resonance structure thus serves as a novel and unique ‘NMR-fingerprint’ leading to the unambiguous assignment of [RhCln(H2O)6−n]3−n complexes (n = 3–6), without reliance on accurate δ(103Rh) chemical shifts.  相似文献   

18.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

19.
The title compound, {(C6H14N2O2)[Cu2Cl6(H2O)]}n, consists of 1,4‐dihydroxy‐1,4‐diazoniabicyclo[2.2.2]octane dications and one‐dimensional inorganic anionic {[Cu2Cl6(H2O)]2−}n chains in which both five‐coordinate [CuCl3(H2O)] and five‐coordinate [CuCl3] units exist. These two distinct type of unit are linked together by one chloride ion and are bridged across centres of inversion to further units of their own type through two chloride ions, giving rise to novel polymeric zigzag chains parallel to the c axis. The chains are connected by O—H...Cl hydrogen bonds to produce R24(16) ring motifs, resulting in two‐dimensional layers parallel to the ac plane. These layers are linked into a three‐dimensional framework with the organic cations via O—H...Cl hydrogen bonds. Hydrogen bonding between the chains, and between the chains and the organic cations, provides stability to the crystal structure.  相似文献   

20.
The europium complex [EuCl2(bpy)2(H2O)2]Cl?1.25 C2H6O?0.37 H2O, where bpy is 2,2′‐bipyridine, was synthesized and investigated with the aim to relate its molecular geometry and crystal packing to the efficiency of energy‐transfer processes. The presence of H‐bonds between noncoordinated Cl? ions and coordinated H2O molecules leads to the formation of discrete trimers assembled by a number of C? H???Cl and stacking interactions into ‘supramolecular balls’ which contain Cl? ions and solvate molecules (H2O and EtOH). The additional stabilization of the complex is due to intramolecular N???C interactions between two bpy ligands that causes some shortening of the Eu? N bonds. Deciphering the luminescence properties of the Eu complex was performed under consideration of both the composition of the inner coordination sphere and the peculiarities of the crystal packing. The influence of the latter and the bpy orientation on the energy of the ligand→Eu charge‐transfer state (LMCT) was established, and an additional excited state induced by the π‐stacking interaction (SICT) was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号