首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Proton and carbon-13 NMR data recorded in the Fourier transform mode are reported for ten ortho-substituted, six 2,6-disubstituted, and six miscellaneous polysubstituted aryltrimethyltin compounds. Although ¦1J(13C1H)¦ and ¦2J(119SnC1H)¦ coupling constants are rather insensitive to substituent variation, tin methyl proton chemical shifts reflect the increasing inductive effects as methyl-, chloro-, fluoro-, and trifluoromethyl-groups are brought into juxtaposition with the trimethyltin moiety. Resonances in the natural-abundance carbon-13 NMR spectra for the tin derivatives are assigned on the basis of additivity relationships, proton undecoupled spectra, and relative magnitudes of ¦J(119Sn13C)¦ and ¦J(13C19F)¦ coupling constants. Mutually deshielding γ-, δ-, and ?-effects in the carbon-13 chemical shifts of substituent carbons are rationalized in terms of steric crowding between the trimethyltin group and neighboring substituents. Deshieldings in ring carbons formally para- to conjugating substituents are discussed in terms of the steric inhibition of resonance model. Previous conclusions concerning lack of significant higher coordination at tin in aryltin derivatives bearing substituents with lone pair electrons are corroborated in this work.  相似文献   

2.
Proton NMR data at 100 MHz are reported for thirteen para- and meta-substituted phenyltrimethyltin compounds, XC6H4Sn(CH3)3, where X = para-N(CH3)2, para-OCH3, para-OC2H5, para-CH3, meta-CH3, -H, para-F, meta-OCH3, para-Cl, para-Br, meta-F, meta-Cl and para-Sn(CH3)3. Correlation coefficients with Hammett σ-constants of greater than 0.95 are obtained with the methyltin proton chemical shifts and coupling constants to carbon [1J(13C1H)] and tin [2J(SnC1H)]. Solvent effects and other extraneous factors invalidate comparisons of ? values in terms of the relative attenuation of the transmission of substituent effects through homologous carbon, silicon, germanium and tin systems, but coupling constant data reflect a diminution of ca. one tenthfold per bond in the order ?[C(1)Sn] > ? [SnC] > ? [CH]. Satisfactory correlations (r > 0.95) are obtained in this series of closely-related compounds among the conventionally recorded two-bond, 2J(SnC1H) and the constituent, one-bond 1J (Sn13C) and J(13C1H) coupling constants, but the correlation coefficient for the comparison between the two one-bond couplings, 1J(Sn13C) and 1J(13C1H) is lower (r = 0.872). Changes in the couplings at the methyltin carbon bond tin-119 atoms are interpreted in terms of isovalent hybridization; a model based upon effective nuclear charges is tested with respect to both NMR coupling constants and 119Sn Mössbauer Isomer shifts at tin and is invalidated. Proton and carbon-13 NMR, chemical shift and coupling constant data are used to derive a Hammett σ-constant for the para-trimethyltin group of ?0.14, and the significance of this value is discussed.  相似文献   

3.
Proton NMR data for the Group III methyl derivatives, MMe3 and LiMMe4 are compared with NMR data for the novel tin—Group III-metal bonded species, Li[Me3SnMMe3] (M  Al, Ga, In and Tl) and for Li[(Me3Sn)n-TlMe4?n] (n = 0 to 4), reported here for the first time.The presence of tinmetal bonding in these derivatives is established by the observed tin-across-metal coupling constants and for the thallium derivatives by the additional observation of thallium-across-tin coupling.The variation in the magnitudes of 2J(SnCH), 2J(TlCH), 3J(SnMCH) and 3J(TlSnCH) are reported as a function of M and as a function of the number of Me3Sn groups bond to thallium in the [(Me3Sn)nTIME4?n]?anions. Proposals concerning the factors governing the changes in these coupling constants and the chemical shifts are presented.  相似文献   

4.
The linear relationship between the coupling constants 1J(Sn? 13C) and 2J(Sn? H), observed for a number of organotin compounds, does not hold for coupling in the Sn? CHnCl3?n group of mono- and dichloromethyltin compounds. A complete determination of all NMR parameters of the compounds Me3Sn-CHnCl3?n (n = 0 to 3) shows no further anomalies, indicating that steric factors must be responsible for the unusually low values of 2J(Sn? H) in the SnCHnCl3?n group. Molecular weight measurements support this theory, showing that the chlorine-containing compounds are associated.  相似文献   

5.
The 1H and 19F spectra of a variety of mono- and di- fluorinated pyridines are examined, and compared with the corresponding spectra of the pyridinium ions. The magnitudes and signs of the 1H? 19F coupling constants are in general in accord with those observed for the corresponding 1H? 1H couplings, with an exaggerated range. Large changes in the NMR parameters are observed on protonation of the nitrogen, 3J(H? F) changing sign in some of the α-fluoropyridine derivatives.  相似文献   

6.
Satellites corresponding to metal-proton coupling constants through two and four bonds are observed in PMR spectra of Pb, Sn and Hg allenic derivatives. The relative signs of these coupling constants are deduced from analysis of the satellite spectra: 2J(X? H) and 4J(X? H) are of opposite signs for X = 207Pb, 119Sn, 117Sn and of same sign for X = 199Hg. Probable absolute signs of reduced coupling constants are discussed in relation to published data: 2K(X? C? H) is probably positive for X = 207Pb, 119Sn, 117Sn and 199Hg. 4K(X? C?C?C? H) is probably negative for X = 207Pb, 119Sn, 117Sn and positive for X = 199Hg.  相似文献   

7.
The solvatochromic comparison method is used to unravel solvent polarity and hydrogen bonding effects on a variety of NMR spectral shifts and coupling constants. Solvent effects are rationalized in terms of the solvatochromic parameters π*, δ, α and β. Properties analyzed include 19F shifts of 5-fluoroindole, 1H shifts of fluorodinitromethane, tert-butanol, phenol, 2-methylbut-1-en-3-yne, and thioacetamide, 1H and 13C shifts and J(13C1H) coupling constants of chloroform, 13C shifts of acetone, 15N shifts of pyridine, 15N and 29Si shifts of 1-methylsilatrane, and some J(119Sn,C,19F) coupling constants of polyalkyltin compounds.  相似文献   

8.
In this article, we describe the characteristic 15N and 1HN NMR chemical shifts and 1J(15N–1H) coupling constants of various symmetrically and unsymmetrically substituted 1,4‐dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N‐alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Proton NMR spectra are reported for 15N enriched borazine and a series of 15N enriched derivatives: N-methyl-borazine, N,N′-dimethylborazine and a new photochemical product, 1-methyl-2-aminoborazine. Chemical shifts for the ring (15N? H) protons have been measured. Using a Fourier transform spectrometer, fine structure in the 15N? H doublet is resolved. Ortho and meta ring proton and three-bond 15N to H coupling constants have been determined. Substituent effects on chemical shifts and coupling constants for borazine derivatives are compared with those for analogous benzene derivatives.  相似文献   

10.
We report the 1H NMR and 13C NMR chemical shifts and J(H,H), J(H,F) and J(C,F) coupling constants of 13 2,4‐diamino‐10‐methylpyrimido[4,5‐b]‐5‐quinolone derivatives, some of them with moderate activity against Plasmodium falciparum in vitro. They were characterized and assigned on the basis of 1H, 13C and 13C–1H (short‐ and long‐range) correlated spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Solvent effects on the 1H NMR parameters of perhydro-oxazolo[3,4?a]pyridine, perhydropyrido[1,2?c]?[1,3]oxazine and perhydrothiazolo[3,4?a]pyridine derivatives are described. Particularly marked are changes in the proton-proton geminal coupling constants of the NCH2O and NCH2S methylene protons with solvent and these are attributed to reaction field and solvation effects rather than to changes in the position of conformational equilibria.  相似文献   

12.
Using the pulse Fourier transform technique, the high resolution carbon-13 NMR spectra of 1,2,4- and 1,3,5-triazine and their methyl derivatives as well as the 1H noise decoupled spectra of phenyl- and methylphenyl substituted triazines, have been recorded and analysed. The chemical shifts of the polysubstituted 1,2,4-triazines normally show additivity; deviations observed with phenyl derivatives are ascribed to steric effects. The 13C? H coupling constants are compared to those of benzene, pyridine, the diazines and disubstituted ethylenes. The strong influence on the coupling constants exerted by number and position of the nitrogen atoms is revealed by the observation that geminal couplings in 1,2,4-triazine are larger than vicinal ones, in contrast to the usual sequence.  相似文献   

13.
A broadband proton–proton‐decoupled CPMG‐HSQMBC method for the precise and direct measurement of long‐range heteronuclear coupling constants is presented. The Zangger–Sterk‐based homodecoupling scheme reported herein efficiently removes unwanted proton–proton splittings from the heteronuclear multiplets, so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between singlet maxima in the resulting spectra. The proposed pseudo‐1D/2D pulse sequences were tested on nucleotides, a metal complex incorporating P heterocycles, and diglycosyl (di)selenides, as well as on other carbohydrate derivatives, for the extraction of nJ(1H,31P), nJ(1H,77Se), and nJ(1H,13C) values, respectively.  相似文献   

14.
1J(13C?13C) nuclear spin–spin coupling constants in derivatives of acetylene have been measured from natural abundance 13C NMR spectra and in one case (triethylsilyllithiumacetylene) from the 13C NMR spectrum of a 13C-enriched sample. It has been found that the magnitude of J(C?C) depends on the electronegativity of the substituents at the triple bond. The equation 1J(13C?13C) = 43.38 Ex + 17.33 has been derived for one particular series of the compounds Alk3SiC?CX, where X denotes Li, R3Sn, R3Si, R3C, I, Br or Cl. The 1J(C?C) values found in this work cover a range from 56.8 Hz (in Et3SiC?Li) to 216.0 Hz (in PhC?CCI). However, the 1J(C?C) vs Ex equation combined with the Egli–von Philipsborn relationship allows the calculation of the coupling constants in Li2C2 (32 Hz) and in F2C2 (356 Hz). These are probably the lowest and the highest values, respectively, which can be attained for 1J(CC) across a triple bond. The unusually large changes of the 1J(C?C) values are explained in terms of substituent effects followed by a re-hybridization of the carbons involved in the triple bond. INDO FPT calculations performed for two series of acetylene derivatives, with substituents varied along the first row of the Periodic Table, corroborate the conclusions drawn from the experimental data.  相似文献   

15.
The 1H NMR spectra of a number of new derivatives of benzobicyclo[3.1.1]heptene were examined and interpreted by using a single set of coupling constants. All the compounds belonging to this system are in a γ-shaped configuration. Surprisingly, two different proton-proton spin-spin coupling constants (4J=5.5 to 6 Hz and 8.5 Hz) were obtained for the cyclobutane ring.  相似文献   

16.
Synthesis and NMR Spectra of Some 13C-Labelled Thio- and Seleno-ethers, -acetals, and -orthoesters Twenty-seven different open-chain and cyclic derivatives (RX)nCH4-n and (RX)nCH3-nR′ with n = 1?3, X = S or Se, R,R′ = alkyl or aryl, 1,3,5-trithiane, and bis-(dimethylsulfonio)methane and -methanide with single or multiple 13C-labelling have been synthesized. The 13C-NMR spectra of the sulfur and selenim compounds have been measured, and the dependence of the chemical shifts (δc) and coupling constants [′J(C,H), ′J(Se,C)] from the substitution pattern in discussed (Fig. 1) and compared with the polyhalogeno-methanes (Fig. 2).  相似文献   

17.
All J(P? H) and J(P? C) values, including signs, have been obtained in acetylenic and propynylic phosphorus derivatives, R2P(X)? C?C? H and R2P(X)? C?C? CH3 (X ? oxygen, lone pair and R ? C6H5, N(CH3)2, OC2H5, N(C6H5)2, Cl) from 1H and 13C NMR spectra. In PIV derivatives the following signs are obtained: 1J(P? C)+, 2J(P? C)+, 3J(P? C)+, 3J(P? H)+, 4J(P? H)? . Linear relations are observed between 1J(P? C), 2J(P? C) and 3J(P? C) versus 3J(P? H), indicating that these coupling constants are mainly dependent on the Fermi contact term, though the other terms of the Ramsey theory do not seem to be negligible for 1J(P? C) and 2J(P? C). In PIII derivatives these signs are: 1J(P? C)- and +, 2J(P? C)+, 3J(P? C)-, 3J(P? H)-, 4J(P? H)+. Only 3J(P? C) and 3J(P? H) reflect a small contribution of the Fermi contact term while in 1J(P? C) and 2J(P? C) this contribution seems to be negligible relative to the orbital and/or spin dipolar coupling mechanisms.  相似文献   

18.
Newly determined and accurate data for the magnitudes of cis vinyl proton-proton spin-spin coupling constants in cis-dialkylethylenes and cycloalkenes have been obtained. With these new data and also values taken from the recent literature, it has proved possible to make a critical determination of the correlation between 3J(H? H) and C?C? H bond angles in ethylenic systems. It is suggested that it is possible to obtain accurate estimates of bond angles using NMR coupling constants, even though much more data will be required to fully substantiate this proposal. Whereas cis-3J(H? H) decreases rapidly with increasing C?C? H bond angles, evidence is presented that the opposite is the case for trans-3J(H? H). A brief theoretical discussion of these trends in coupling constants is given.  相似文献   

19.
The NMR spectra of the trivalent fluorophospholanes ( 1, 2, 3 ) have been analysed at length. The absolute signs of the 3J(P? H) and 4J(F? H) coupling constants have been referred to the known negative sign of the 1J(P? F) coupling constant from selective heteronuclear double resonance experiments. The 3J(P? O? C? H) and 3J(P? N? C? H) coupling are positive. The weak values observed for 3J(P? S? C? H) have opposite signs, the larger being positive. All the 4J(F? P? X? C? H) coupling constants are positive showing a lack of stereospecificity.  相似文献   

20.
The analysis of the ABKX spectra of thirteen compounds of the series RC(H-K)(F-X)C(H-A)(H-B)X gave the four vicinal proton-proton and fluorine-proton coupling constants. These coupling constants of conformationally mobile structures were used (i) to calculate the populations of the rotational states of the ? CHF? CH2? bond, (ii) to calculate the vicinal trans proton-proton J(HH)t and gauche and trans fluorine-proton coupling constants J(FH)g and J(FH)t and (iii) to give the unambiguous assignment of protons H-A and H-B. The dependence of the gauche and trans coupling constants with substituent electronegativity is explored. The results extend known correlations towards smaller electronegativity values. More quantitatively, the results and those in the literature, excluding those where deformations of torsional or bond angles occur, give a good fit of the data: a linear fit for J(HH)t = 15.0-0.77 Σ(ΔE), an exponential fit for J(FH)g = 15.35 exp [-0.266 Σ (ΔE)] and a linear fit for J(FH)t = 65.75 - 7.52 Σ (ΔE), where Σ (ΔE) is the sum of the electronegativity difference between hydrogen and the six atoms or groups on the CH? CF fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号