首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The redox system of potassium persulfate–thiomalic acid (I1–I2) was used to initiate the polymerization of acrylamide (M) in aqueous medium. For 20–30% conversion the rate equation is where Rp is the rate of polymerization. Activation energy is 8.34 kcal deg?1 mole?1 in the investigated range of temperature 25–45°C. Mn is directly proportional to [M] and inversely to [I1]. The range of concentrations for which these observations hold at 35°C and pH 4.2 are [I1] = (1.0–3.0) × 10?3, [I2] = (3.0–7.5) × 10?3, and [M] = 5.0 × 10?2–3.0 × 10?1 mole/liter.  相似文献   

2.
A series of group 4 metallocenes (RCp)[Cp―(bridge)―(2‐C4H3S)]MCl2 [M = Ti ( C1 , C2 , C3 , C4 ); M = Zr ( C5 , C6 , C7 , C8 )] bearing a pendant thiophene group on a cyclopentadienyl ring have been synthesized, characterized and tested as catalyst precursors for ethylene polymerization. The molecular structures of representative titanocenes C2 and C4 were confirmed by single‐crystal X‐ray diffraction and revealed that both complexes exist in an expected coordination environment for a monomeric bent metallocene. No intramolecular coordination between the thiophene group and the titanium center could be observed in the solid state. Upon activation by methylaluminoxane (MAO), titanocenes C1 , C2 , C3 , C4 showed moderate catalytic activities and produced high‐ or ultra‐high‐molecular‐weight polyethylene (Mv 70.5–227.1 × 104 g mol?1). Titanocene C3 is more active and long‐lived, with a lifetime of nearly 9 h at 30 °C. At elevated temperatures of 80–110 °C, zirconocenes C5 , C6 , C7 , C8 displayed high catalytic activities (up to 27.6 × 105 g PE (mol Zr)?1 h?1), giving high‐molecular‐weight polyethylene (Mv 11.2–53.7 × 104 g mol?1). Even at 80 °C, a long lifetime of at least 2 h was observed for the C8/MAO catalyst system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Previous studies by Buckler and Norrish of the second limit of CO and O2 mixtures containing small amounts (0.25–10%) of H2 have been used to obtain the velocity constant of the reaction These estimates of k33 = 3.9 × 108 and 3.5 × 108 liter2 mole?2 sec?1 (M ? H2) at 500° and 560°C, respectively, have been combined with other estimates over the range 300°–3500°K to give k33 = 3.0 × 108 exp (?3000/RT) for M ? Ar; the considerable scatter in the available points does not encourage any great confidence in this expression and may be attributed at least partly to the different molecules used as M by different workers. For KCl-coated and CsCl-coated vessels at 540°C, studies of the second limit of H2 + O2 mixtures, to which CO has been added, have indicated that with both the surfaces, the effect of CO on the limit is masked by changes in the surface nature. In the case of CsCl, the results have enabled a lower limit of about 0.6 to be obtained for the efficiency of CO relative to H2 in the reaction Use of a computer treatment to interpret the second limit of CO + H2 + O2 mixtures in aged boric-acid-coated vessels at 500°C gives a value of mCO = 0.74 ± 0.04 together with an estimate of k32 (H + CO + M″ = HCO + M″)/k4 = 0.022 ± 0.003, which leads to k32 = 2.3 × 108 liter2 mole?2 sec?1 (M ? H2) at 500°C.  相似文献   

4.
The kinetics of oxidation of tartaric acid (TAR) by peroxomonosulfate (PMS) in the presence of Cu(II) and Ni(II) ions was studied in the pH range 4.05–5.20 and also in alkaline medium (pH ~12.7). The rate was calculated by measuring the [PMS] at various time intervals. The metal ions concentration range used in the kinetic studies was 2.50 × 10?5 to 1.00 × 10?4 M [Cu(II)], 2.50 × 10?4 to 2.00 × 10?3M [Ni(II)], 0.05 to 0.10 M [TAR], and µ = 0.15 M. The metal(II) tartarates, not TAR/tartarate, are oxidized by PMS. The oxidation of copper(II) tartarate at the acidic pH shows an appreciable induction period, usually 30–60 min, as in classical autocatalysis reaction. The induction period in nickel(II) tartarate is small. Analysis of the [PMS]–time profile shows that the reactions proceed through autocatalysis. In alkaline medium, the Cu(II) tartarate–PMS reaction involves autocatalysis whereas Ni(II) tartarate obeys simple first‐order kinetics with respect to [PMS]. The calculated rate constants for the initial oxidation (k1) and catalyzed oxidation (k2) at [TAR] = 0.05 M, pH 4.05, and 31°C are Cu(II) (1.00 × 10?4 M): k1 = 4.12 × 10?6 s?1, k2 = 7.76 × 10?1 M?1s?1 and Ni(II) (1.00 × 10?3 M): k1 = 5.80 × 10?5 s?1, k2 = 8.11 × 10?2 M?1 s?1. The results suggest that the initial reaction is the oxidative decarboxylation of the tartarate to an aldehyde. The aldehyde intermediate may react with the alpha hydroxyl group of the tartarate to give a hemi acetal, which may be responsible for the autocatalysis. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 620–630, 2011  相似文献   

5.
Abstract

The complex μ-TEPP-trans-bis[P(OEt)3Ru(NH3)4]2(PF6)4 has been prepared and characterized by microanalysis, vibrational and electronic spectroscopy (λmax=299 nm, ?=6.4 × 102 M?1 cm?1; λmax=262 nm, ?=8.6 × 102 M?1 cm?1), and cyclic voltammetry (E°'=+0.64 V versus S.C.E., 25°, μ=0.10 M NaCf3COO, CH+=1 × 10?3 M). In aqueous solutions, ([H+] > 1 × 10?4 M), the binuclear species undergoes hydrolysis yielding the mononuclear species trans-(Ru(NH3)4P(OEt)3(H2O)]2+ with a specific rate constant of 2.4 × 10?5 sec?1 at 25° δH#=84.5 kJ mol?1; δS#=?49.4 J mol?1 K?1.  相似文献   

6.
Syndiospecific polymerization of styrene was catalyzed by monocyclopentadienyltributoxy titanium/methylaluminoxane [CpTi (OBu)3/MAO]. The atactic and syndiotactic polystyrenes were separated by extracting the former with refluxing 2-butanone. The activity and syndiospecificity of the catalyst were affected by changes in catalyst concentration and composition, polymerization temperature, and monomer concentration. Extremely high activity of 5 × 107 g PS (mol Ti mol S h)?1 with 99% yield of the syndiotactic product were achieved. The concentration of active species, [C*], has been determined by radiolabeling. The amount of the syndiospecific and nonspecific catalytic species, [C] and [C] respectively, correspond to 79 and 13% of the CpTi(OBu)3. The rate constants of propagation for C and C at 45°C are 10.8 and 2.0 (M s)?1, respectively, the corresponding rate constants for chain transfer to MAO are 6.2 × 10?4 and 4.3 × 10?4s?1. There was no deactivation of the catalytic species during a batch polymerization. The rate constant of chain transfer with monomer is 6.7 × 10?2 (M s)?1; the spontaneous β-hydride transfer rate constant is 4.7 × 10?2 s?1. The polymerization activity and stereospecificity of the catalyst are highest at 45°C, both decreasing with either higher or lower temperature. The stereoregular polymer have broad MW distributions, M?w/M?n = 2.8–5.7, and up to three crystalline modifications. The Tm of the s-PS polymerized at 0–90°C decreased from 261.8 to 241°C indicating thermally activated monomer insertion errors. The styrene polymerization behaviors were essentially insensitive to the dielectric constant of the medium.  相似文献   

7.
The reduction of Fe(CN)5L2? (L = pyridine, isonicotinamide, 4,4′‐bipyridine) complexes by ascorbic acid has been subjected to a detailed kinetic study in the range of pH 1–7.5. The rate law of the reaction is interpreted as a rate determining reaction between Fe(III) complexes and the ascorbic acid in the form of H2A(k0), HA?(k1), and A2? (k2), depending on the pH of the solution, followed by a rapid scavenge of the ascorbic acid radicals by Fe(III) complex. With given Ka1 and Ka2, the rate constants are k0 = 1.8, 7.0, and 4.4 M?1 s?1; k1 = 2.4 × 103, 5.8 × 103, and 5.3 × 103 M?1 s?1; k2 = 6.5 × 108, 8.8 × 108, and 7.9 × 108 M?1 s?1 for L = py, isn, and bpy, respectively, at μ = 0.10 M HClO4/LiClO4, T = 25°C. The kinetic results are compatible with the Marcus prediction. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 126–133, 2005  相似文献   

8.
E. M. F. of the Cell, Cd-Hg (2-phase)/CdAc2(m), Hg2Ac2(s)/Hg was measured at 20°, 25°, 30° and 40°C. The standard e. m. f. of the cell, Cd/CdAc3(m), Hg2Ac2(c)/Hg was evaluated as E°=1.1500?11.09×10?4T+1.06×10?8T2 The thermodynamic data of the reaction, Cd(c) + Hg2Ac2(c)=2Hg(l)+Cd++(aq)+2Ac?(aq) at 25°C were estimated as ΔF°=?42,139, ΔH°=?48,698 cal mole?1 and ΔS°=?22.0 cal deg?1 mole?1 at 25°C. The thermodynamic data for the formation of Hg2Ac2(s) were evaluated as ΔFf°=?202.3, ΔHf°=?154.5 Kcal mole?1 and S°=72.9 cal deg?1 mole?1. From measurements of the heats of solution of CdAc2·2H2O in aqueous solution, the relative partial molal enthalpies of cadmium acetate in aqueous solution were estimated.  相似文献   

9.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

10.
Temperature dependences of the paramagnetic shifts induced by Eu(fod)3 in 1H NMR spectra of ethylene oxide in carbon disulphide solution are obtained in the temperature range from +40 to ? 100°C at 100 MHz and from +30 to ?60°C at 60 MHz. The influence of chemical exchange leads to a decrease of the observed paramagnetic shifts with decreasing temperature. It is shown that a modified Swift and Connick equation can be used to describe the observed dependences. Upper limits of the mean lifetimes of the Eu(fod)3-ethylene oxide adduct are τp < 1·7 × 10?8 s at 14 °C and τp < 1 × 10?8 s at 20 °C, respectively. The corresponding activation energy is equal to Va = 13·7 kcal/mol.  相似文献   

11.
At pH 4.5 (citrate buffer), D -gluconhydroximo-lactone ( 2 ), the N-methylurethane 3 and the N-phenylurethane 4 inhibit competitively the hydrolysis of p-nitrophenyl β-D -glucopyranoside by emulsin. The IC50 values of 2, 3 , and 4 were 1.6 × 10?4, 1.0 × 10?4, and 5.8 × 10?6 M , respectively. The Ki values of 2 and 4 were 9.8 × 10?5 and 2.3 × 10?6 M , respectively, while D-glucono-1,5-lactone ( 1 ) showed IC50 = 1.1 × 10?4 M and Ki = 3.7 × 10?5 M .  相似文献   

12.
A series of ethylene‐bridged C1‐symmetric ansa‐(3‐R‐indenyl)(fluorenyl) zirconocene complexes ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) incorporating a pendant arene substituent on the 3‐position of indenyl ring have been synthesized. The structure of complex 4 was further confirmed by X‐ray diffraction analysis. When activated with methylaluminoxane, four sterically less encumbered complexes 1 , 2 , 4 and 5 could catalyze the dimerization of propylene in toluene at 100°C to afford 2‐methyl‐1‐pentene with high selectivities up to 95.7–98.4% and moderate activities of 2.00 × 104 to 7.89 × 104 g (mol‐Zr?h)?1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The kinetics of the aquation of (H2O)5Cr(O2CCCl3)2+ have been examined at 35–55°C and 1.00M ionic strength with [H+] = 0.01?1.00M. The reaction follows the rate equation -d ln [Crtotal]/dt = (a[H+]?1 + b + c[H+])/(1 + d[H+]), where [Crtotal] is the stoichiometric concentration of the complex. At 45°C a = (1.41 ± 0.03) × 10?7M/s, b = (1.66 ± 0.02) × 10?5 s?1, c = (7.0 ± 0.8) × 10?5M?1·S?1 and d = 2.3 ± 0.3M?1. Two mechanisms consistent with this rate law are discussed, with evidence being presented in favor of an ester hydrolysis mechanism involving steady-state intermediates. Equilibrium and activation parameters were determined.  相似文献   

14.
The anilinepentacyanoferrate (II) complex has been characterized in aqueous solution. The complex exhibits a predominant ligand field transition at λmax = 415 nm with ?max = 494 M?1 cm?1. The corresponding Fe(III) complex displays a strong absorption at λmax = 700nm(?max = 1.61×104 M?1 sec?1) which can be assigned as a ligand to metal charge transfer transition. The rate constants of formation and dissociation for the Fc(II) complex are (3.14±0.18)×102 M?1W?1 and 0.985±0.005 sec?1, respectively, at μ = 0.10 M LiClO4, pH = 8 and T = 25°C. The cyclic voltammetry of the complex shows that a reversible redox process is observed with E1/2 value of 0.51±0.01 V vs. NHE at μ = 0.10 M LiClO4, pH = 8 and T = 25°C. The kinetic study of the oxidation of the Fe(II) complex by ferricyanide ion yielded the rate constant of the reaction ket = (1.43±0.04)x10 M sec?1 at μ = 0.10 M LiClO4, pH = 8 and T = 25°C.  相似文献   

15.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

16.
Measurements of the e.m. f.'s of the cell, have been made over a temperature range from 15° to 40°C. The standard e.m.f. of the Hg/Hg2Ac2(s), Ac? electrode was given by E0=?0.8640+1.832×10×3T?21.84×10?7T2. The thermodynamic properties of the reaction, Hg2Ac2(s)+2Cl?=Hg2Cl2(s)+2Ac? and those for the formation of Hg2Ac2(s) at 25°C were Computed.  相似文献   

17.
Graphene nanosheets modified glassy carbon electrode (GNs/GCE) was fabricated as voltammetric sensor for rutin with good sensitivity, selectivity and reproducibility. The sensor exhibits an adsorption‐controlled, reversible two‐proton and two electron transfer reaction for the oxidation of rutin with a peak‐to‐peak separation (ΔEp) of 26 mV as revealed by cyclic voltammetry. Moreover, the redox peak current increased about 14 times than that on bare glassy carbon electrode (GCE). The linear response of the sensor is from 1×10?7 to 1×10?5 M with a detection limit of 2.1 × 10?8 M (S/N = 3). The method was successfully applied to determine rutin in tablets with satisfied recovery.  相似文献   

18.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

19.
《Electroanalysis》2004,16(12):1051-1058
The voltammetric behavior of α‐ketoglutarate (α‐KG) at the hanging mercury drop electrode (HMDE) has been investigated in acetate buffer solution. Under the optimum experimental conditions (pH 4.5, 0.2 M NaAc‐HAc buffer solution), a sensitive reductive wave of α‐KG was obtained by linear scan voltammetry (LSV) and the peak potential was ?1.18 V (vs. SCE), which was an irreversible adsorption wave. The kinetic parameters of the electrode process were α=0.3 and ks=0.72 1/s. There was a linear relationship between peak current ip, α‐KG and α‐KG concentration in the range of 2×10?6–8×10?4 M α‐KG. The detection limit was 8×10?7 M and the relative standard deviation was 2.0% (Cα‐KG=8×10?4 M, n=10). Applications of the reductive wave of α‐KG for practical analysis were addressed as follows: (1) It can be used for the quantitative analysis of α‐KG in biological samples and the results agree well with those obtained from the established ultraviolet spectrophotometric method. (2) Utilizing the complexing effect between α‐KG and aluminum, a linear relationship holds between the decrease of peak current of α‐KG Δip and the added Al concentration Cequation/tex2gif-inf-5.gif in the range of 5.0×10?6–2.5×10?4 M. The detection limit was 2.2×10?6 M and the relative standard deviation was 3.1% (Cequation/tex2gif-inf-6.gif=4×10?5 M, n=10). It was successfully applied to the detection of aluminum in water and synthetic biological samples with satisfactory results, which were consistent with those of ICP‐AES. (3) It was also applied to study the effect of AlIII on the glutamate dehydrogenase (GDH) activity in the catalytically reaction of α‐KG+NH +NADH?L ‐glutamate+NAD++H2O by differential pulse polarography (DPP) technique. By monitoring DPP reductive currents of NAD+ and α‐KG, an elementary important result was found that Al could greatly affect the activity of GDH. This study could be attributed to intrinsic understanding of the aluminum's toxicity in enzyme reaction processes.  相似文献   

20.
Potentiometric sensors with plasticized polymer membranes based on organic ion exchangers, tetraalkylammonium dodecyl sulfates (benzyldimethyldodecylammonium, benzyldimethyltetradecylammonium, dimethyldistearylammonium), have been proposed for the determination of quaternary ammonium salts in model solutions and KATAPAV technical solutions. The thermal stability, composition, and solubility product have been estimated. It has been shown that ion associates are stable to 60?C70°C, K S varies in the range from 2 × 10?8 to 5 × 10?10. The basic electrochemical parameters of the sensors have been determined as well, such as linearity ranges of the electrode function (5 × 10?5 (5 × 10?6)?1 × 10?2 (1 × 10?3) M) and slopes of the electrode functions (47?C59 mV/pc), response time (60?C90 sec), potential drift (2?C3 mV/day), operation period (3?C4 months), limits of detection for tetramethylammonium salts (1 × 10?5?4 × 10?7 M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号