首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The application of triphenyltinhydride and of triphenyltindeuteride in specific reduction of β-jonone and dehydro-β-jonone has been investigated and the preparation of pure dihydro-β-jonone,dihydro-β-jonone-d1, dihydro-β-jonone-d2, and dihydro-dehydro-β-jonone described.  相似文献   

3.
4.
The English Footnotes (*) referring to Schemes 1-6 are intended to provide an extension of this summary. In the Footnote (*) to Scheme 5, a definition of the term ‘chirogenic reaction step’ is given. 2-Aminopropenenitrile in solvents such as MeCN, MeOH, or H2O is photoisomerized by UV light to racemic aziridine-2-carbonitrile (rac- 2 ); the larger part of the starting material, however, fragments to HCN and MeCN. The observed photocyclization constitutes a structural connection within an ensemble of C3H4N2 compounds considered to be potentially relevant to prebiotic chemistry.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
β-Sinensal (2,6-dimethyl-10-methylene-dodeca-2,6,11-trienal) was synthesized from the diene-aldehyde 5 . This was converted into the trans- and cis-triene-aldehydes 16 and 17 , which were condensed with the phosphorane 18 to give the corresponding two geometrical isomers ( 3 and 19 ) of β-sinensal.  相似文献   

13.
14.
15.
16.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

17.
18.
19.
Selective Amide Cleavage in Peptides Containing α,α-Disubstituted α-Amino Acids A new synthesis of dipeptides with terminal α,α-disubstituted α-amino acids, using 2,2-disubtituted 3-amino-2H-azirines 1 as amino-acid equivalents, is demonstrated. The reaction of 1 with N-protected amino acids leads to the corresponding dipeptide amides in excellent yield. It is shown that the previously described selective hydrolysis (HCl, toluene, 80°, or HCl, MeCN/H2O, 80°) of the terminal amide group results in an extensive epimerization of the second last amino acid. An acid-catalyzed enolization in the intermediate oxazole-5(4H)-ones is responsible for this loss of configurational integrity. In the present paper, a selective hydrolysis of the terminal amide group under very mild conditions is described: In 3N HCl (THF/H2O 1:1), the dipeptide N,N-dimethylamides or N-methytlanilides are hydrolized at 25–35° to the optically pure dipeptides in very good yield.  相似文献   

20.
Novel dihydroiridium(III) complexes containing mono- and bi-dentate sulfur ligands have been isolated. The cationic complexes [Ir(COD)L2]ClO4 (COD = 1,5-cyclooctadiene, L = tetrahydrothiophene (tht) or trimethylene sulfide (tms); L2 = (CH3S)2(CH2)3 (dth)), [Ir(COD)(L-L)]2(ClO4)2 (L-L = 1,4-dithiacyclohexane (dt) or (t-BuS)2(CH2)2 (tmdto)) and [Ir(CO)2(tmdto)]2-(ClO4)2 react with H2 to give the corresponding iridium(III) dihydrides: [IrH2COD)L2]ClO4 (Ia: L = tht, Ib: L = tms, Ic: L2 = dth), [IrH2(COD)-(L-L)]2(ClO4)2 (IIa: L-L = tmdto, IIb: L-L = dt) and [IrH2(CO)2(tmdto)]2-(ClO4)2 (III). The 1H NMR chemical shifts and ν(IrH) data are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号